### 1.1.1

EXPRESSING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS AS: A $\underline{x}=\underline{b}$

We wish to solve systems of simultaneous linear algebraic equations of the general form:

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
:: \\
::  \tag{1.1.1-1}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{gather*}
$$

Where we have $N$ equations for the $N$ unknowns $x_{1}, x_{2}, \ldots, x_{n}$.

As a particular example, consider the following set of these three equations $(\mathrm{N}=3)$ for the three unknowns $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ :

$$
\begin{gather*}
x_{1}+x_{2}+x_{3}=4 \\
2 x_{1}+x_{2}+3 x_{3}=7 \\
3 x_{1}+x_{2}+6 x_{3}=2 \tag{1.1.1-2}
\end{gather*}
$$

$\mathrm{a}_{\mathrm{ij}}=$ constant coefficient (usually real) multiplying unknown $\mathrm{x}_{\mathrm{j}}$ in equation \#i.
$\mathrm{B}_{\mathrm{i}}=$ constant "right-hand-side" coefficient for equation \#i.

For the system (1.1.1-2) above,

$$
\begin{array}{llll}
\mathrm{a}_{11}=1 & \mathrm{a}_{12}=1 & \mathrm{a}_{13}=1 & \mathrm{~b}_{1}=4 \\
\mathrm{a}_{21}=2 & \mathrm{a}_{22}=1 & \mathrm{a}_{23}=3 & \mathrm{~b}_{2}=7 \\
\mathrm{a}_{31}=3 & \mathrm{a}_{32}=1 & \mathrm{a}_{33}=6 & \mathrm{~b}_{3}=2
\end{array}
$$

It is common to write linear systems in matrix/vector for as:

$$
\begin{equation*}
\mathrm{A} \underline{x}=\underline{b} \tag{1.1.1-3}
\end{equation*}
$$

Where the vector of unknowns $\underline{x}$ is written as:

$$
\underline{\mathrm{x}}=\left[\begin{array}{l}
\mathrm{x}_{1}  \tag{1.1.1-4}\\
\mathrm{x}_{2} \\
\vdots \\
\vdots \\
\mathrm{x}_{\mathrm{n}}
\end{array}\right]
$$

The vector of right-hand-side coefficients $\underline{b}$ is written:

$$
\underline{\mathrm{b}}=\left[\begin{array}{l}
\mathrm{b}_{1}  \tag{1.1.1-5}\\
\mathrm{~b}_{2} \\
\vdots \\
\vdots \\
\mathrm{~b}_{\mathrm{n}}
\end{array}\right]
$$

The matrix of coefficients A is written in a form with N rows and N columns,

$$
\mathrm{A}=\left[\begin{array}{ccccc}
\mathrm{a}_{11} & \mathrm{a}_{12} & a_{13} & \ldots & a_{1 n}  \tag{1.1.1-6}\\
\mathrm{a}_{21} & \mathrm{a}_{22} & a_{23} & \ldots & a_{2 n} \\
: & : & : & & : \\
: & : & : & & : \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]
$$

We see that row ' i ' contains the values $\mathrm{a}_{\mathrm{i} 1}, \mathrm{a}_{\mathrm{i} 2}, \ldots, \mathrm{a}_{\mathrm{in}}$ that are the coefficients multiplying each unknown $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}$ in equation $\#$ i.

Rows $\Leftrightarrow$ equations
Columns $\Leftrightarrow$ coefficients multiplying a specific unknown in each equation.
$\mathrm{a}_{\mathrm{ij}}=$ element of A in ith row and jth column
$=$ coefficient multiplying $\mathrm{x}_{\mathrm{j}}$ in equation $\#$ i.

After we will write the coefficients in matrix form explicitly, so that we may write $\mathrm{A} \underline{x}=\underline{b}$ as:

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n}  \tag{1.1.1-7}\\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
: & : & : & & : \\
: & : & : & & : \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
: \\
: \\
b_{2} \\
x_{N}
\end{array}\right]=\left[\begin{array}{l}
: \\
\vdots \\
b_{n}
\end{array}\right]
$$

For the example system (1.1.1-2):

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=4 \\
2 x_{1}+x_{2}+3 x_{3}=7 \\
3 x_{1}+x_{2}+6 x_{3}=2
\end{gathered}
$$

## (1.1.1-2, repeated)

We have:
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6\end{array}\right]$

$$
\underline{\mathrm{b}}=\left[\begin{array}{l}
4  \tag{1.1.1-8}\\
7 \\
2
\end{array}\right]
$$

As we will represent our linear systems as matrices "acting on" vectors, some review of basic vector notation is required.

