<u>1.1.1</u>

EXPRESSING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS AS: $A \ge b$

We wish to solve systems of simultaneous linear algebraic equations of the general form:

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots$$

$$a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n} = b_{n}$$
(1.1.1-1)

Where we have N equations for the N unknowns $x_1, x_2, ..., x_n$.

As a particular example, consider the following set of these three equations (N=3) for the three unknowns x_1, x_2, x_3 :

$$x_1 + x_{2+}x_3 = 4$$

$$2x_1 + x_2 + 3x_3 = 7$$

$$3x_1 + x_2 + 6x_3 = 2$$
 (1.1.1-2)

 a_{ij} = constant coefficient (usually real) multiplying unknown x_j in equation #i. B_i = constant "right-hand-side" coefficient for equation #i.

For the system (1.1.1-2) above,

$a_{11} = 1$	$a_{12} = 1$	$a_{13} = 1$	$b_1 = 4$
$a_{21} = 2$	$a_{22} = 1$	$a_{23} = 3$	$b_2 = 7$
$a_{31} = 3$	$a_{32} = 1$	$a_{33} = 6$	$b_3 = 2$

It is common to write linear systems in matrix/vector for as:

$$A \underline{x} = \underline{b}$$
 (1.1.1-3)

Where the vector of unknowns \underline{x} is written as:

$$\underline{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \vdots \\ \mathbf{x}_n \end{bmatrix}$$
(1.1.1-4)

The vector of right-hand-side coefficients \underline{b} is written:

$$\underline{\mathbf{b}} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \vdots \\ \mathbf{b}_n \end{bmatrix}$$
 (1.1.1-5)

The matrix of coefficients A is written in a form with N rows and N columns,

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix}$$
(1.1.1-6)

We see that row 'i' contains the values $a_{i1}, a_{i2}, ..., a_{iN}$ that are the coefficients multiplying each unknown $x_1, x_2, ..., x_N$ in equation #i.

Rows ⇔ equations	Columns <	\Leftrightarrow	coefficients multiplying a
			specific unknown in each
			equation.

 a_{ij} = element of A in ith row and jth column

= coefficient multiplying x_j in equation #i.

After we will write the coefficients in matrix form explicitly, so that we may write $A \underline{x} = \underline{b}$ as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ b_n \end{bmatrix}$$
(1.1.1-7)

For the example system (1.1.1-2):

$$x_1 + x_2 + x_3 = 4$$

 $2x_1 + x_2 + 3x_3 = 7$
 $3x_1 + x_2 + 6x_3 = 2$ (1.1.1-2, repeated)

We have:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \qquad \qquad \underline{\mathbf{b}} = \begin{bmatrix} 4 \\ 7 \\ 2 \end{bmatrix} \qquad (1.1.1-8)$$

As we will represent our linear systems as matrices "acting on" vectors, some review of basic vector notation is required.