TR_1D_model1_SS\jacket_heat_transfer.m

% TR_1D_model1_SS\jacket_heat_transfer.m % % function [b_HT,bJac_HT,iflag] = jacket_heat_transfer(... % State,epsilon,ProbDim,Reactor,Physical,Grid); % % This MATLAB m-file calculates the % contribution from heat transfer to the % jacket to the source term and its % Jacobian in a 1D tubular reactor model. % A simple heat transfer coefficient expression % in the limit of large coolant flow rates is % used in this routine. % % INPUT : % ====== % State This structure contains the concentration and % temperature field data. % epsilon This vector has 1's for the interior point equations and 0's for the boundary equations. % % ProbDim This structure contains the dimensioning % parameters for the system. This structure contains the reactor data % Reactor % Physical This structure contains the physical data This structure contains the grid data % Grid % % OUTPUT : % ======= %bHT This column vector contains the contribution % to the source term from heat transfer to the % iacket. % bJac HT This is the Jacobian matrix of b HT. % % Kenneth Beers % Massachusetts Institute of Technology % Department of Chemical Engineering % 7/2/2001 % % Version as of 7/25/2001

function [b_HT,bJac_HT,iflag] = jacket_heat_transfer(... State,epsilon,ProbDim,Reactor,Physical,Grid);

iflag = 0;

func_name = 'jacket_heat_transfer';

% This integer flag controls what action to take in % the case of an error. i error = 2;

% Since this is called only from func_calc_b_int, the % input is not checked.

% First, allocate b_HT and bJac_HT and initialize to zeros.

num_DOF = (ProbDim.num_species+1)*Grid.num_pts;

b_HT = linspace(0,0,num_DOF)';

bJac_HT = spalloc(num_DOF,num_DOF,Grid.num_pts);

% Next, set offset to start of temperature field.

Tpos_offset = ProbDim.num_species*Grid.num_pts;

% Now, exact a list of the interior points from % the epsilon values for the first field.

list_int = find(epsilon(1:Grid.num_pts) ~= 0);

% To model the heat transfer to the jacket, we use % a simple heat transfer coefficient model assuming % large enough coolant flow rates that the coolant % temperature is constant. The following factor % is used to determine the strength of the heat % transfer.

jacket_strength = 4*Reactor.U_HT/Reactor.dia;

% For every interior point

for count=1:length(list_int)
ipoint = list_int(count);

% set the degree of freedom index for the % temperature field at this point **iDOF = Tpos_offset + ipoint;**

% The contribution to the source term from % heat transfer to the reactor is now

% The contribution to the Jacobian of the % source term is also calculated. bJac_HT(iDOF,iDOF) = -jacket_strength;

end

iflag = 1;

return;