
Fall 2005 10.34 Exam II. Wed. Nov. 9, 2005


(SOLUTION) 

Read through the entire exam before beginning work, and budget your time. 

You are researching drug eluting stents, and wish to understand better how the drug 
release rate depends upon the properties of the fluid in which it is immersed. You develop 
a model using the simplified geometry shown in the figure below. 

The stent is placed on a solid impermeable surface, and to simply the flow problem, we 
assume that the drug stent is very thin and does not affect the local nature of the flow. 
Also, we assume that the stent is very wide in the out-of-plane direction so that we can 
neglect variation in the z direction. The local velocity of the fluid goes from zero at the 
solid surface (no-slip BC) to the superficial velocity V at a distance  from the surface. δb 

We assume a linear velocity profile, 

v ( )x y =









------ ≤ ≤  , b 
Vy

0 y δδb (EQ 1) 

V y  δ> , b 

Given this velocity profile, we wish to model the external mass transfer resistance to 
release of drug from the stent. We solve the 2-D convection/diffusion equation 

2 2 
∂c ∂c ∂ c ∂ c 
∂t 

= – v + D + Dx∂x ∂x 
2 ∂y 

2 
(EQ 2) 

x x y B to obtain c x y  )  at steady state. on the domain xL ≤ ≤ R  and 0 ≤ ≤  ( , 
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B is a distance sufficiently far away from the surface that we can assume that the drug con
centration is zero there, c x, B) = 0 . At the left “inlet” boundary x = xL , we use the BC ( 

c xL, y) = 0 . At the right “outlet” boundary, we use the BC ∂c ⁄ ∂x( = 0 . At the solid sur(xR, y) 

x L  and the remaining regions are impermeface y = 0 , the stent occupies the region 0 ≤ ≤  
x Lable to the drug. At the stent surface, we use the boundary condition c(0 ≤ ≤ , 0) = ceq , 

where c  is the drug concentration in the fluid that is in equilibrium with the stent. At all eq 

other regions on the impermeable surface, we use the no-flux BC ∂c ⁄ ∂y = 0 .(x, 0) 

, , ,  , , ,  ,  B .The parameters for this problem are V δb D ceq L xL xR 

NOTE: 

This problem was inspired by an actual numerical study performed by a student 
here at MIT. In that case, she was looking at the spatial distribution of drug release 
into the underlying tissue by solving a reaction/diffusion equation in the underlying 
surface underneath the stent to model drug uptake. She also solved, coupled to 
the convection/diffusion equation in the fluid stream, the Navier-Stokes equations 
to compute the exact laminar velocity profile around the stent. In practice, the drug 
release into the underlying tissue is not spatially uniform, but is concentrated just 
below and downstream of the stent. Here, I have simplified the problem by making 
the underlying surface impermeable to the drug and by neglecting any perturba
tion in the flow field by the stent. 

(You wish to compute the steady state concentration profile c x, y)  using finite differences. 
You wish your solution to approximate the case of an isolated stent on an infinitely large 
solid surface in contact with an infinitely large body of fluid, with specified values of the 
superficial velocity V, boundary layer thickness δb , drug equilibrium concentration ceq , 
stent size L, and drug diffusivity D. 

(1.a) (5 pts) Describe how would you choose the remaining parameter values in a set of 
one or more finite difference calculations to approximate the solution in this limiting case. 

ANSWER: 

To simulate a single stent on an infintely large surface we want xL → ∞  and xR → ∞ . 
To simulate contact with an infinitely large body of fluid, we want B → ∞ . But, for our 
finite difference calculations, all of these values must be finite. So, we start with 
moderately large values of these distances, and increase them until they no 
longer seem to affect the local behavior of the solution near the stent. 
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(1.b) (5 pts) How would you determine a sufficient number of grid points to use in your 
calculations? 

ANSWER: 

We only obtain the exact solution, for fixed xL, ,  B , in the limit where the grid point xR 

spacing goes to zero. But again, in practice we can only treat a finite number N or x 

grid points in the x direction and a finite number Ny in the y direction. Again, we 
must increase these until the local solution near the stent no longer appears to 
change significantly with an increase in the number of grid points. 

Also, as an optional additional factor that might influence our decision, we see that 
this is a convection/diffusion problem, and so we should use upwind differencing 
to avoid the unphysical oscillations that occur when the grid point spacing is too 
large. But, these differences are less accurate than central differences. So, we 
might want to choose N  large enough that the local Peclet number V(∆x) ⁄ L is less x 

than two, so that we could safely use the more accurate central finite difference 
approximation. 

, , ,  , L xL xR(2.a) (30 pts) For specified values of all parameters V δb D ceq , , ,  B  and a specified 
grid of N × Ny  grid points, derive the set of algebraic equations that you would solve for x 

the concentration values at the grid points c xi, y ) .( j 

DO NOT ASSUME UNIFORM GRID SPACING, as it is probably much more efficient to 
use a narrower grid point spacing near the stent than far away from it. Assume that you 
already have specified the grid coordinates, 

xL <  <  <  <  <  xR 0 <  <  <  <  <  b (EQ 3) y1 y2 … yNx1 x2 … xNx y 

i N  and Derive first the general equation that is satisfied at all “interior” points 1 < < x 

j Ny . Then for each grid point next to a boundary, show how you modify this equation 1 < <  

to enforce the appropriate boundary condition. 

When writing your equations, for convenience retain using the indices (i, j) to identify 
each grid point c xi, y ) .( j 

ANSWER: 

At each grid point (xi, yj ) , we want the PDE to be satisfied locally, 

2 2 
∂ c ∂ c

0 = – [v ( )]∂c 
+ D + Dx yj ∂x ∂y 

2 
(xi, yj ) ∂x 

2 
(xi, yj ) (xi, yj ) 
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--------------------------------------------------- ---------------------------------------------------

To avoid any chance of unphysical oscillations when the grid point spacing is too 
large, we use upwind differences for the convection term, 

( (c xi, yj) – c xi – 1 , yj)∂c ≈ ---------------------------------------------------
∂x (xi, yj) 

xi – xi – 1 

However, we could (optionally) use the more-accurate central finite diference 
approximation, but only if we explicity check that the local Peclet number is less 
than two. 

For the second derivative in the x direction, we first define the mid-point locations 
1 

xi ± 1 2 = ---(xi + xi ± 1 ) , such that a finite difference approximation of the outer derivative⁄ 2 

yields 

∂c ∂c 
– 2 ∂x ∂x∂ c ⁄(xi + 1 2, yj) ⁄(xi – 1 2, yj)≈ -------------------------------------------------------------
–xi + 1 2 xi – 1 2∂x 

2 
(xi, yj) 

⁄ ⁄ 

We next use central finite difference approximations for each first derivative, 

c xi 1+ , y ) – c xi, y )∂c ( j ( j≈ ---------------------------------------------------
∂x – xi⁄(xi + 1 2, yj) 

xi 1+ 

( (c xi, yj) – c xi – 1 , yj)∂c ≈ ---------------------------------------------------
∂x xi – 1⁄(xi – 1 2, yj) 

xi – 

to obtain the approximation for the second derivative in x, 

c xi 1+ , y ) – c xi, y )( j ( j
2 

– xi∂ c xi 1+ 
–


( (c xi, yj) – c xi – 1 , yj) 
xi – xi – 1≈ ----------------------------------------------------------------------------------------------------------------------

–xi + 1 2 xi – 1 2∂x 
2 

(xi, yj) 
⁄ ⁄ 

Collecting terms, we have 

2 
∂ c i i( ) ( ( ) ( ( ) (≈ ax, lo c xi – 1 , yj) + ax

i
, mi d c xi, yj) + ax, hi c xi 1+ , yj)

∂x 
2 

(xi, yj) 

where 
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----------------------------

i( )  1– 
⁄ ⁄ax, lo = (xi – xi 1– ) 1– (xi + 1 2 – xi – 1 2)

i( )  –1 
⁄ ⁄ax, hi = (xi 1+ – xi)

1– (xi + 1 2 – xi – 1 2)
i i( )  ( ) ( )

ax, mid = –(ax
i
, lo + ax, hi ) 

We do exactly the same thing for the second derivative in y to obtain 

2 
∂ c j j( ) ( ( ) ( ( ) (≈ ay, loc xi, yj 1– ) + ay

j
, mid c xi, yj) + ay, hi c xi, yj 1+ )

∂y 
2 

(xi, yj) 

1where with yj ± 1 2 = ---(yj + yj ± 1) , we have⁄ 2 

j( )  1– 
⁄ ⁄ay, lo = (yj – yj 1– ) 1– (yj + 1 2 – yj – 1 2)

( )  1– –1 
⁄ ⁄ay

j
, hi = (yj 1+ – yj) (yj + 1 2 – yj – 1 2)

j j( )  ( ) ( )
ay

j
, mid = –(ay, lo + ay, hi ) 

i N , 1 < <Thus, at each interior point 1 < <  j Ny , the local PDEx 

2 2 
∂ c ∂ c

0 = – [v ( )]∂c 
+ D + Dx yj ∂x ∂y 

2 
(xi, yj) ∂x 

2 
(xi, yj) (xi, yj) 

yields the linear algebraic equation 

– i i i[ ( )  ( )  ( ) ], ci j ci 1– , j0 = – [v ( )]x yj , + D ax, loci 1– , j + ax, mid ci j + ax, hici 1+ , jxi – xi 1– 

j j[ ( )  ( )  ( )  
, + D ay

j
, loci j, 1– + ay, mid ci j + ay, hi ci j, 1+ ] 

where ci j ≡ c xi, yj) . Collecting terms, we have(, 

,i j , , ,(i j) ( ) (i j) (i j) (i j)
, 0 = Ax,

, 
lo ci 1– , j + Ay, lo ci j, 1– + Amid ci j + Ay, hi ci j, 1+ + Ax, hi ci 1+ , j 

with 
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---------------------

---------------------

(i j) 
=Ax,

, 
lo 

(i j),
Amid 

( )vx yj

xi – xi 1 – 

i( )  (i j) ( )
+ Dax, lo Ay,

, 
lo = Day

j
, lo 

( )vx yj

xi – xi 1 – 

( )
Day

j
, hi 

i[ ( )  ( )
+ D ax, mid + ay

j
, mid ] 

(i j) ( )
Ax,

, 
hi = Dax

i
, hi 

= –


i j( )  
=Ay,

,
hi 

For the grid points that neighbor a boundary, we must modify these equations 
slightly, as the equations call for the value of a concentration at a point outside of 
our grid. 

Inlet BC at x = 0 :


At all grid points near the inlet, i = 1 , we have


(1, j) (1, j) (1, j) (1, j)
0 = Ax, lo c0, j + A

( 
y
1 
,
, 
lo 
j)

c1, j 1 – + Amid c1, j + Ay, hi c1, j 1 + + Ax, hi c2, j 

with the “hypothetical” grid point x0 = xL . Here, we enforce the Dirichlet BC, 

c0, j = c xL, yj) = 0 , so that our modified equations equations enforcing the inlet BC 
( 

are 

(1, j) (1, j) (1, j)
0 = Ay, lo c1, j 1 – + Amid c1, j + A

( 
y
1 
,
, 
hi 
j)

c1, j 1 + + Ax, hi c2, j 

Bulk BC at y = B :


Here, our grid points are j = Ny , for which we have


(i N ) (i N ) (i N ) (i N ) (i N ), y , y 

, y 

, y , y0 = Ax,
, 
lo 

y ci 1 – , Ny 
+ Ay, lo ci N 1 – + Amid ci N + Ay, hi ci N 1 + + Ax, hi ci 1 + , Ny, y , y 

We have our hypothetical grid point at y = B , and enforce the BC by setting N 1 + y 

ci N 1 + = c xi, B) = 0 , so that our modified equations are (, y 

, y(i N ) (i N ) (i N ) (i N ), y , y 

, y , y 
0 = Ax,

, 
lo 

y ci 1 – , Ny 
+ Ay, lo ci N 1 – + Amid ci N + Ax, hi ci 1 + , Ny 

Solid surface at y = 0 :


Here, at j = 1 , we must modify our equations
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----------------- ----------------- -----------------

--------------- ---------------

0 = A
(i, 1)

+ A
(i, 1) (i, 1) (i, 1) (i, 1)

x, lo ci 1– , 1 y, lo ci, 0 + Amid ci, 1 + Ay, hi ci, 2 + Ax, hi ci 1+ , 1 

to account for the hypothetical grid point at y0 = 0 . If 0 ≤ ≤ L , we use the Dirichletxj 

BC ci, 0 = ceq , such that our modified equations are 

0 = A
(i, 1)

+ A
(i, 1) (i, 1) (i, 1) (i, 1)

x, lo ci 1– , 1 y, lo ceq + Amid ci, 1 + Ay, hi ci, 2 + Ax, hi ci 1+ , 1 

Else, our grid point is next to the part of the surface that is impermeable and we 
enforce the BC ∂c ⁄ ∂y = 0 . Using Lagrange interpolation, we approximate c x , y)((xi, 0) i

and its derivative near y = 0 as 

c x , y) = ci, 0L0 y ( ) + ci, 2L2 y( ( ) + ci, 1L1 y ( )i


∂c

= ci, 0L0'( ) + ci, 1L '( ) + ci, 2L2'( )y y1 y

∂y (xi, y) 

where the Lagrange polynomials and their derivatives are 

2 2 2 

Lj y( ) = 
y yk –( ) 
yj yk –( ) 

--

k 0= 

∏ Lj ' y( ) = 
1 

yj yk –( ) 
- -

y yk –( ) 
yj yk –( ) 

- -

m 0= 

∏ 
k 0= 

∑ 

k j≠ k j≠ m j≠ 
m k≠ 

Thus, from our no-flux BC we have 

0 = ci, 0L0' 0 ( ) + ci, 2L2' 0( ) + ci, 1L1' 0 ( )  

so that the necessary modification to our equations is to make the substitution 

L1' 0( )  
=ci, 0 L0' 0( )  

Outlet BC at x = xR :


Finally, we consider the points at i N
= x 

+ci, 1 

L2' 0( )  
ci, 2L0' 0( )  

where we have 

(N , j) (N , j) (N , j) (N , j) (N , j)x x x x xcN cN0 = Ax, lo 1– , j + Ay, lo cN , j 1– + Amid cN , j + Ay, hi cN , j 1+ + Ax, hi 1+ , jx x x x x 
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--------------------------- ---------------------------

Here, we remove the dependence on the hypothetical grid value cN 1+ , j = c xR, y ) by( j 

enforcing the outlet BC ∂c ⁄ ∂x

x 

= 0 . To so so, we again use Lagrange interpola(xR, yj ) 

tion, 

( x x xc x, yj ) = cN 1+ , jLN 1+ ( ) + cN , jLN ( ) + cN 1– , jLN 1– ( )  

∂c 

x x x x x x 

x'( ) + cN '( ) + cN '( )= cN 1+ , jLN 1+ x , jLN x 1– , jLN 1– x x x x x x∂x (x yj ), 

where like before, 

Nx 1– Nx 1– Nx 1– 
(x xk ) 1 (x xk)– – 

Lj( ) = ------------------- Lj '( ) = ∑ (xj – xk ) ∏ (xj – xk)
x x ------------------- -------------------∏ (xj – xk ) 

k = Nx 1+ k = Nx 1+ m = Nx 1+ 

k j k j m j≠ ≠ ≠ 
m k≠ 

Thus, we enforce the BC by making the subsitution 

'( )xRLNx=cN 1+ , jx LN 1+ '( )xRx 

+cN , jx 

'( )LNx 1– xR
cN 1– , jxLN 1+ '( )xRx 

Finally, we will have to account for the fact that at each of the four corners, we 
have to make two of the modifications above. This completes the derivation of the 
set of linear algebraic equations that we solve to obtain the steady-state concen
trations at each grid point. 

(2.b) (5 pts) What numerical issues were you considering when you chose the particular 
finite difference approximations that you used? 

ANSWER: 

When discretizing the first derivative in the convection term, upwind one-sided dif
ferences were used to avoid any spurious oscillations. When discretizing the first 
derivative in the boundary conditions, Langrange interpolation was used to pro
vide just as high accuracy as is used when discretizing the second derivatives. 

Once you have derived these equations, you must solve then in MATLAB. 

(3.a) (5 pts) Explain how you would do this, and describe your procedure for putting the 
problem into a standardized format that one of the MATLAB solvers knows how to handle. 
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ANSWER: 

These are linear algebraic equations, and so I would put them in the form Aϕ = b , 
using a labeling scheme that assigns the unique integer k ∈ [1, N Ny]  to each x

(unknown c xi, yj)  by the rule k = (i 1 – )Ny + j (other rules are acceptable as long as 
they are regular and assign labels uniquely). Above, I have derived the values of 
the matrix coefficients and the only non-zero components of b  arise from the 
Dirichlet BC at the stent surface. 

(3.b) (10 pts) How would the total computational effort require to solve the problem scale 
as powers of N  and Ny ?x 

ANSWER: 

Based on the rule above, I see from the general form of the equations, 

,i j , , ,(i j) ( ) (i j) (i j) (i j)
, , , 0 = Ax,

, 
lo ci 1 – , j + Ay, lo ci j  1 – + Amid ci j + Ay, hi ci j  1 + + Ax, hi ci 1 + , j 

that the linear system is sparse with only five non-zero elements per row. Using 
ϕk = c xi, y ) with k = (i 1 – )Ny + j  to label the unknowns, this yields( j 

, , ,, i j i j i j, (i j) ( ) ( ) ( )
x, lo – + y 

0 = A
(i j)ϕk Ny 

+ Ay, lo ϕk 1 – + Amid ϕk + Ay, hi ϕk 1 + + Ax, hi ϕk N

so that the matrix is banded with bandwidth m = N . When a matrix is banded, y 

Gaussian elimination is much faster, with the computational time scaling as Nm 
2 , 

where N is the number of unknowns and m  is the bandwidth. Here, N = NxNy  and 
3 

m = N , so that the total computational effort scales no more than N Ny . Note that ify x

N < N , it would be advantageous to change the labeling scheme to make the y x 

bandwidth N .x 

(Let us say that you have now computed the steady state concentration field c x, y) using 
the method outlined above. 

(4) (15 pts) Explain in detail how you would compute from your numerical solution the net 
flux of drug out of the stent, in units of moles of drug per unit width in the z direction per 
unit time. “In detail” means set up the exact equation(s) that you would solve to obtain this 
value, and describe what MATLAB routine(s) you would use. 

ANSWER: 
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The diffusive flux of drug out of the stent surface is –D
∂
∂c

y 
, in units of moles of 

(x, 0) 

drug per unit area of stent per unit time. Integrating over x, we obtain the net flux 
out of the stent in units of moles of drug per unit width in the z direction per unit 
time, 

L ∂c 
net flux = ∫ –D dx∂y0 (x, 0) 

Using the same Lagrangian interpolation method as for the von Neumann BC at 
the solid surface, we can estimate the value of the derivative at each grid point
0 ≤ ≤ L  on the stent surface. We then obtain the net flux by integrating over these xj 

values with trapz. 

Let’s say that we now want to simulate a dynamic release, where initially the fluid con
tains no drug and then at time zero, the release from the drug begins until steady state is 
reached. Assume that you will have to do this calculation several times for different 
parameter values, and so computational time is a concern. 

(5.a) (5 pts) What MATLAB routine would you use to perform the calculation, and why do 
you choose this particular one? 

ANSWER: 

I would use ode15s, as sets of coupled ODEs obtained by discretizing PDEs such 
as this one are quite stiff for any moderately large number of grid points. 

To use this MATLAB routine, you have to supply additional routine(s) as well to provide 
information about the dynamics of your specific system. 

(5.b) (10 pts) What information will you provide, and how do you obtain it from the deri
vations you performed for your steady-state calculation above? 

ANSWER: 

(I would have to supply the time derivative vector, f t, ϕ) = Aϕ – b , where A and b  are 
the same quantities derived above. Also, as ode15s is implicit, I should supply the 
Jacobian matrix to avoid ode15s having to estimate it by costly finite difference 
approximations. Luckily, I already have the Jacobian matrix, which is just A . 
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----

Here we have neglected variation in the out-of-plane z direction by assuming infinite 
width of the stent in that direction. 

(6) (10 pts) If we wanted to relax this approximation and model a stent of finite length and 
width, what new numerical issues would arise in computing the steady state solution? 

ANSWER: 

By relaxing this approximation, we have a 3-D boundary value problem. There is 
nothing conceptually new about how we discretize the diffusion equation or 
enforce the boundary conditions. What would change is the method used to solve 
the set of linear algebraic equations, since Gaussian elimination cannot be used 
with 3-D systems due to extreme fill-in problems. Therefore, I would have to use 
an iterative solver that does not have this problem, along the lines of the methods 
described in class (e.g. gmres). 

(7) (5 pts) Your @#$% professor has just given you another exam that is far too long to 
complete in just 55 minutes. Scanning the test, you see that there are N problems, where 

, ,  , N is worth Pj points. You estimate that problem j would take Tjeach problem j = 1 2  …


minutes to finish completely, and you are confident you would get the right answer if you 

had enough time. Due to partial credit, you feel the score that you would receive on each 


question is proportional to the time allotted to it, so that if you spend 1---Tj minutes on prob
2 

lem j, you receive 1---Pj points. Express the problem of finding the best time-management
2 

strategy in terms of a constrained minimization that you can solve numerically. 

ANSWER: 

I want to set up this problem as a minimization of a cost function subject to some 
number of equality or inequality constraints. The set of variables that we vary are 
the times {t1, ,  , tN } allocated to each problem. We want to maximize the score,t2 …

so with the effect of partial credit, we minimize the cost function 

N 
tjF = – ∑ Pj 

   
c  Tj

j 1= 

subject to the constraints that the times spent on each problem cannot exceed the 
total necessary time to solve it completely, and that the total amount of time spent 
on the exam cannot exceed 55 minutes, 

0 ≤ ≤ Tj j = 1 2  …, ,  , Ntj 

(t1 + +  … + tN ) ≤ 55t2 
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This type of resource allocation problem is common in industry, often with the use 
of linear cost and constraint functions such as found here. In this instance, it is 
easy to see that the optimal strategy is to work through the problems in order of 
their decreasing rate of point generation, Pj ⁄ Tj ; however, the general linear pro
gramming approach outlined here is far more general and can be applied to many 
problems where the optimal strategy is not so evident. 
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