Ch 7 Probability Theory and Stochastic Simulation:

Frequentist statistics:

- Probability of observing E: $\quad p(E) \approx \frac{N_{E}}{N}$
- Joint Probability: $p\left(E_{1} \cap E_{2}\right)=p\left(E_{1}\right) p\left(E_{2} \mid E_{1}\right)$
- Expectation:
$E(W)=\langle W\rangle \approx \frac{1}{N_{\text {exp }}} \sum_{v=1}^{N_{\text {exp }}} W_{v}$
Bayes' Theorem:

$$
p\left(E_{1}\right) p\left(E_{2} \mid E_{1}\right)=p\left(E_{2}\right) p\left(E_{1} \mid E_{2}\right)
$$

- Bayes' Theorem is general.

Definitions:

- variance: $\operatorname{var}(W)=E\left[(W-E(W))^{2}\right\rfloor=E\left(W^{2}\right)-\left\lfloor E(W)^{2}\right\rfloor$
- $\quad(\mathrm{X}, \mathrm{Y}$ independent, $\operatorname{var}(\mathrm{X}+\mathrm{Y})=\operatorname{var}(\mathrm{X})+\operatorname{var}(\mathrm{Y}))$
- standard deviation: $\quad \sigma=\sqrt{\operatorname{var}(W)}$
- covariance $\operatorname{cov}(X, Y)=E\{[X-E(X)][Y-E(Y)]\}$, for two random variables X and Y
- covariance matrix

Important Probability Distributions Definitions:

- Discrete random variable
- For $X_{i}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$
- $N\left(X_{i}\right)=$ number of observations of Xi
- T is the total number of observations $\quad \sum_{i=1}^{M} N\left(X_{j}\right)=T$
- Probability is definied by: $P\left(X_{i}\right)=\frac{N\left(X_{i}\right)}{T}$
- Normalization is defined by $\sum_{i=1}^{M} P\left(X_{j}\right)=1$
- Continuous random variable
- This is just the continuous version of the above, defined by integrals instead of limits, differentials instead of increments
- Normalization condition:

$$
\begin{aligned}
& \int_{x_{l_{o}}}^{x_{h i}} p(x) d x=1 \\
& E(x)=\langle x\rangle=\int_{x_{l o}}^{x_{h i}} x p(x) d x
\end{aligned}
$$

- Expectation
- Cumulative Probability distribution
- Basis of RAND in matlab
- $F\left(X_{M}\right)=\int_{x_{l o}}^{x} p\left(x^{\prime}\right) d x^{\prime}=u$
- u is defined as uniformly distributed $0 \leq u \leq 1$

Bernoulli trials

- Concept that observed error is the net sum of many small random errors

Random Walk Problem

- key point: independence of coin tosses
- Main results: $\quad\langle x\rangle=0 \quad\left\langle x^{2}\right\rangle=n l^{2}$

Binomial Distribution

- probability distribution: $P\left(n, n_{H}\right)=\binom{n}{n_{H}} p_{H}{ }^{n_{H}}\left(1-p_{H}\right)^{\left(n-n_{H}\right)}$
- binomial coefficient: $\binom{n}{n_{H}}=\frac{n!}{n_{H}!\left(n-n_{H}\right)!}$
- BINORND

Matlab to generate random number distributed using binomial distribution

Gaussian (Normal) Distribution

- Take binomial distribution, change into probability of observing net displacement after n steps of length I

$$
\circ \quad p(x ; n, l)=\frac{n!}{\left[\frac{(n+x / l)}{2}\right]!\left[\frac{(n-x / l)}{2}\right]}\left(\frac{1}{2}\right)^{n}
$$

- Evaluate in limit that $\mathrm{n} \rightarrow \infty$, take natural log, and use Stirling's approximation
- Algebra, and taylor expand around the In terms
- Taking the exponential and normalizing such that: $\int_{-\infty}^{\infty} P(x ; n, l) d x=1$
- $P(x ; \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{x^{2}}{2 \sigma^{2}}\right] \quad \sigma^{2}=n l^{2}$
- Binomial Distribution of random walk reduces to Gaussian Distribution as $n \rightarrow \infty$
- Central Limit Theorem: sequence of random variables, which are not distributed normally, the statistic
- $S_{n}=\frac{1}{\sqrt{n}} \sum_{j=1}^{N} \frac{\xi_{j}-\mu_{j .}}{\sigma_{j}}$
- random variable: ξ_{j} with mean $\mu_{j \text {. }}$ and variance $\sigma_{j}{ }^{2}$
- is normally distributed in the limit that $\mathrm{n} \rightarrow \infty$, with variance $=1$
- $P\left(S_{n}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{S_{n}{ }^{2}}{2}\right]$
- Non-zero Mean (basis of randn)
- $\quad N\left(\mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]$
- Multivariate Gaussian Distribution (use of covariance matrix)
- Covariance Matrix: $\left.[\operatorname{cov}(\underline{v})]_{i j}=E\left\{\left[\nu_{i}-E\left(v_{i}\right)\right] \nu_{j}-E\left(v_{j}\right)\right]\right\}$
- Covariance Matrix is always symmetric and positive definite
- For independent components: $\operatorname{cov}(\underline{v})=\sigma^{2} I$
- $\quad \operatorname{cov}(\underline{v})=\operatorname{cov}(A \underline{x})=A[\operatorname{cov}(\underline{x})] A^{T}$
- if \underline{v} is a random vector and $\underline{\mathrm{c}}$ is a constant vector:
- $\operatorname{var}(\underline{c} \cdot \underline{v})=\operatorname{var}\left(\underline{c}^{T} \underline{v}\right)=\underline{c}^{T}[\operatorname{cov}(\underline{(\underline{v}})] \underline{c}=\underline{c} \cdot[\operatorname{cov}(\underline{v})] \underline{c}$
- $P(\underline{v} ; \underline{\mu}, \Sigma)=\frac{1}{(2 \pi)^{N / 2} \sqrt{\Sigma \mid}} \exp \left\{-\frac{1}{2}(\underline{v}-\underline{\mu})^{T} \Sigma^{-1}(\underline{v}-\underline{\mu})\right\}$

Poisson Distribution

- Poisson distribution can be used to determine probability of success if there are n trials, derived in the limit as $\mathrm{n} \rightarrow \infty$
- Total number of successes in trial is a random variable, which d
- Another limiting case of binomial distribution
- $\quad P(\xi ; n, p)=\frac{(p n)^{\xi}}{\xi!} e^{-p n}$
- $p=$ probability of individual success
- $\mathrm{n}=$ number of trials
- $\xi=$ result if success or failure, typically $\{1,0\}$ with different probabilities

Boltzmann/Maxwell Distributions

- $P(\underline{q})=\frac{1}{Q} \exp \left[-\frac{E(q)}{k T}\right]$
- Q is the normalization constant
- Replacing $E(q)$ for kinetic energy we arrive at Maxwell Distribution

$$
\circ \quad P(\underline{v}) \propto \exp \left[-\frac{m|\underline{\underline{v}}|^{2}}{2 k T}\right]
$$

Brownian Dynamics and Stochastic Differential Equations

- velocity autocorrelation function
- $\quad C_{V_{x}}(t \geq 0) \approx C_{V_{x}}(0) e^{-t / \tau_{V_{x}}} \quad \tau_{v_{x}}=\frac{2 \rho R^{2}}{9 \mu}$
- $\left\langle V_{x}(t) V_{x}(0)\right\rangle=2 D \delta(t)$
- Dirac Delta Function
- $\delta(t)=\lim _{\sigma \rightarrow 0} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{t^{2}}{2 \sigma^{2}}\right]$
- $\int_{-\infty}^{\infty} f(t) \delta(t) d t=f(0)$
- Langevin equation
- Wiener process
- Stochastic Differential equations
- Explicit Euler SDE method
- $x(t+\Delta t)-x(t)=-\frac{1}{\zeta}\left(\left.\frac{d U}{d x}\right|_{x(t)}\right)(\Delta t)+[2 D]^{1 / 2}\left(\Delta W_{t}\right)$
- Ito's Stochastic Calculus
- Example: Black-Scholes
- Fokker-Planck
- Einstein Relation
- Brownian motion in multiple dimensions
- MCMC
- Stat Mech example
- Metropolis recipe (pg497)
- Example: Ising Lattice
- Field theory
- Monte Carlo Integration
- Simulated annealings
- Genetic Programming

Bayesian Statistics and Parameter Estimation

Goal of this material is to draw conclusions from data ("statistical inference") and estimate parameters. Basic definitions

- Predictor variables: $\underline{x}=\left[x_{1} x_{2} x_{3} \ldots x_{M}\right]$
- Response variable: $y^{(R)}=\left[y_{1} y_{2} y_{3} \ldots y_{L}\right]$
- $\underline{\theta}$: model parameters

Main goal: match model prediction to that of the observed response by selecting $\underline{\theta}$.

Single-Response Linear Regression

- set of predictor variables, known a priori: $\underline{x^{[k]}}=\left[x_{1}{ }^{[k]} X_{2}{ }^{[k]} x_{3}{ }^{[k]} \ldots x_{M}{ }^{[k]}\right]$, for the kth experiment
- measurement $y^{[k]}$
- assume a linear model: $y^{[k]}=\beta_{0}+\beta_{1} x_{1}^{[k]}+\beta_{2} x_{2}{ }^{[k]}+\ldots+\beta_{M} x_{M}{ }^{[k]}+\varepsilon^{[k]}$
- the error in $\varepsilon^{[k]}$ is responsible for the difference between model and observed
- define $\underline{\theta}=\left[\beta_{0} \beta_{1} \beta_{2} \ldots \beta_{\mathrm{M}}\right]^{T}$
- response is:

$$
\begin{aligned}
& y^{[k]}=\underline{x}^{[k]} \cdot \underline{\theta}^{(\text {rue) })}+\varepsilon^{[k]} \\
& \hat{y}^{[k]}=\underline{x}^{[k]} \cdot \underline{\theta}^{(r u v e)}
\end{aligned}
$$

- model prediction is:
- define design matrix X, which contains all information about every experiment (with different predictor variables)

$$
X=\left[\begin{array}{c}
---\underline{x}^{[1]}--- \\
---\underline{x}^{[2]}--- \\
\vdots \\
---\underline{x}^{[N]}---
\end{array}\right]
$$

- vector of predicted responses:

$$
\underline{\hat{y}}(\underline{\theta})=\left[\begin{array}{c}
\underline{y}^{[1]}(\underline{\theta}) \\
\underline{\hat{y}}^{[2]}(\underline{\theta}) \\
: \\
\underline{y}^{[N]}(\underline{\theta})
\end{array}\right]=X \underline{\theta}
$$

Linear Least Squares Regression

- minimize sum of squared errors:

$$
S(\underline{\theta})=\sum_{k=1}^{N}\left[y^{[k]}-\hat{y}^{[k]}(\underline{\theta})\right]^{2}
$$

- First derivative $=0,2^{\text {nd }}$ derivative is >0, using these conditions with above equation you can derive a linear system
- $\left(X^{T} X\right) \underline{\theta}_{L S}=X^{T} \underline{y} \rightarrow \underline{\theta}_{L S}=\left(X^{T} X\right)^{-1} X^{T} \underline{y}$ (review point?)
- $X^{\top} X$, contains information about experimental design to probe the parameter values
- $X^{\top} \mathrm{X}$ is a real, symmetric matrix that is positive-semidefinite
- Solving this is through standard linear solving, or QR decomposition or some other method
- All this estimates parameters, but does not give us accuracy of our estimates

Bayesian view of statistical inference

- Statement of belief (especially in random number generators)

Bayesian view of single-response regression

- Begin with $y^{[k]}=\underline{x}^{[k]} \cdot \underline{\theta}^{(t r u e)}+\varepsilon^{[k]}$
- When we repeat this experiment multiple times, we get a vector $\underline{\varepsilon}$
- With Gauss-Markov Conditions: $E\left(\varepsilon^{[k]}\right)=0 \quad \operatorname{cov}\left(\varepsilon^{[k]}, \varepsilon^{[j]}\right)=\delta_{k j} \sigma^{2}$
- We also assume that our error is normally distributed
- Probability of observing some response y

$$
\text { - } \quad p(\underline{y} \mid \underline{\theta}, \sigma)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{N} \sigma^{-N} \exp \left[-\frac{1}{2 \sigma^{2}} S(\underline{\theta})\right]
$$

- We use Bayes' Theorem to get probability of $\underline{\theta}$ and σ
- Posterior density: $p(\underline{\theta}, \sigma \mid \underline{y})=\frac{p(\underline{y} \mid \underline{\theta}, \sigma) p(\underline{\theta}, \sigma)}{p(\underline{y})}$
- $p(y)$ is a normalizing factor
- we redefine $p(\underline{y} \mid \underline{\theta}, \sigma)$ to $I(\underline{\theta}, \sigma \mid \underline{y})$
- in the Bayesian framework we want to maximize posterior density
- Non-informative priors: $\mathrm{p}(\underline{\theta}, \sigma)=\mathrm{p}(\underline{\theta}) \mathrm{p}(\sigma) \quad p(\underline{\theta}) \sim c \quad p(\underline{\theta}) \propto \sigma^{-1}$

Nonlinear least squares

- the treatment via least squares still works, we just use numerical optimization, utilizing a cost function, to get there: (review point?)
- $\quad F_{\text {cost }}(\underline{\theta})=\frac{1}{2} S(\underline{\theta})=\frac{1}{2} \sum_{k=1}^{N}\left[y^{[k]}-f\left(\underline{x}^{[k]} ; \underline{\theta}\right)\right]^{2}$
- use of linearized design matrix
- Hessians (first order approximation to get to $X^{\top} X$). Remember to get convergence, approximate Hessian needs to be positive-definite.
- Levenberg-Marquardt method: ill-conditioned systems

Generating Confidence Intervals

- t-statistic
- $t \equiv \frac{\bar{y}-\theta}{(s / \sqrt{N})}$
- $p(t \mid v) \propto\left[1+\frac{t^{2}}{v}\right]^{-\frac{(v+1)}{2}}$
- in the limit that v approaches infinity, t-distribution reduces to Normal distribution
- confidence intervals for model parameters
- $\left.\quad \theta_{j}=\theta_{M, j} \pm T_{v, \alpha / 2} s\left\{\left.X^{T} X\right|_{\theta_{\mu}}\right]_{j j}^{-1}\right\}^{1 / 2}$
- $\quad v=N-\operatorname{dim}(\theta)$

MCMC in Bayesian Analysis

