Ch 7 Probability Theory and Stochastic Simulation:

Frequentist statistics:

- Probability of observing E: $p(E) \approx \frac{N_E}{N}$
- Joint Probability:
- Expectation:

$$p(E_1 \cap E_2) = p(E_1)p(E_2 | E_1)$$
$$E(W) = \langle W \rangle \approx \frac{1}{N_{\text{exp}}} \sum_{\nu=1}^{N_{\text{exp}}} W_{\nu}$$
$$p(E_1)p(E_2 | E_1) = p(E_2)p(E_1 | E_2)$$

Bayes' Theorem:

- Bayes' Theorem is general.

Definitions:

- variance: $var(W) = E[(W E(W))^2] = E(W^2) [E(W)^2]$
- (X, Y independent, var(X+Y) = var(X) + var(Y))
- standard deviation: $\sigma = \sqrt{\operatorname{var}(W)}$
- covariance $cov(X,Y) = E\{[X E(X)][Y E(Y)]\}$, for two random variables X and Y
- covariance matrix

Important Probability Distributions Definitions:

- Discrete random variable
 - For $X_i = \{X_1, X_2, ..., X_m\}$
 - $N(X_i)$ = number of observations of Xi
 - $\circ~$ T is the total number of observations
 - Probability is definied by:
 - Normalization is defined by
- Continuous random variable
 - This is just the continuous version of the above, defined by integrals instead of limits, differentials instead of increments
 - Normalization condition:
- $\int_{x_{lo}}^{x_{hi}} p(x) dx = 1$ $E(x) = \langle x \rangle = \int_{x_{lo}}^{x_{hi}} x p(x) dx$

- Expectation
- Cumulative Probability distribution
 - o Basis of RAND in matlab

 $\sum_{i=1}^{M} N(X_{j}) = T$ $P(X_{i}) = \frac{N(X_{i})}{T}$ $\sum_{i=1}^{M} P(X_{j}) = 1$

$$\circ \quad F(X_M) = \int_{x_{lo}}^{x} p(x') dx' = u$$

o u is defined as uniformly distributed $0 \le u \le 1$

Bernoulli trials

Concept that observed error is the net sum of many small random errors

Random Walk Problem

- key point: independence of coin tosses
- Main results: $\langle x \rangle = 0$ $\langle x^2 \rangle = nl^2$

Binomial Distribution

probability distribution:
$$P(n, n_H) = \binom{n}{n_H} p_H^{n_H} (1 - p_H)^{(n - n_H)}$$

- binomial coefficient: $\binom{n}{n_H} = \frac{n!}{n_H!(n-n_H)!}$
- **BINORND** Matlab to generate random number distributed using binomial distribution

Gaussian (Normal) Distribution

- Take binomial distribution, change into probability of observing net displacement after n steps of length I

$$\circ \quad p(x;n,l) = \frac{n!}{\left[\frac{(n+x/l)}{2}\right]! \left[\frac{(n-x/l)}{2}\right]} \left(\frac{1}{2}\right)^n$$

- Evaluate in limit that $n \rightarrow \infty,$ take natural log, and use Stirling's approximation
- Algebra, and taylor expand around the In terms
- Taking the exponential and normalizing such that: $\int P(x; n, l) dx = 1$

-
$$P(x;\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{x^2}{2\sigma^2}\right]$$
 $\sigma^2 = nl^2$

- Binomial Distribution of random walk reduces to Gaussian Distribution as n-> ∞
- Central Limit Theorem: sequence of random variables, which are not distributed normally, the statistic

$$\circ \quad S_n = \frac{1}{\sqrt{n}} \sum_{j=1}^{N} \frac{\xi_j - \mu_{j.}}{\sigma_j}$$

- \circ random variable: ξ_{j} with mean μ_{j} and variance σ_{i}^{2}
- is normally distributed in the limit that $n \rightarrow \infty$, with variance = 1

$$\circ P(S_n) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{S_n^2}{2}\right]$$

- Non-zero Mean (basis of **randn**)

$$\circ N(\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

- Multivariate Gaussian Distribution (use of covariance matrix)
 - Covariance Matrix: $[\operatorname{cov}(\underline{\nu})]_{ij} = E\{[\nu_i E(\nu_i)]]\nu_j E(\nu_j)\}$
 - o Covariance Matrix is always symmetric and positive definite
 - For independent components: $cov(\underline{\nu}) = \sigma^2 I$
 - $\circ \quad \operatorname{cov}(\underline{\nu}) = \operatorname{cov}(A\underline{x}) = A[\operatorname{cov}(\underline{x})]A^{T}$
 - o if \underline{v} is a random vector and \underline{c} is a constant vector:

$$\circ \operatorname{var}(\underline{c} \cdot \underline{\nu}) = \operatorname{var}(\underline{c}^{T} \underline{\nu}) = \underline{c}^{T} [\operatorname{cov}(\underline{\nu})] \underline{c} = \underline{c} \cdot [\operatorname{cov}(\underline{\nu})] \underline{c}$$

$$\circ P(\underline{\nu};\underline{\mu},\Sigma) = \frac{1}{(2\pi)^{N/2}\sqrt{|\Sigma|}} \exp\left\{-\frac{1}{2}(\underline{\nu}-\underline{\mu})^T \Sigma^{-1}(\underline{\nu}-\underline{\mu})\right\}$$

Poisson Distribution

- Poisson distribution can be used to determine probability of success if there are n trials, derived in the limit as n→∞
- Total number of successes in trial is a random variable, which d
- Another limiting case of binomial distribution

-
$$P(\xi;n,p) = \frac{(pn)^{\xi}}{\xi!} e^{-pn}$$

- p = probability of individual success
- n = number of trials
- ξ = result if success or failure, typically {1,0} with different probabilities

Boltzmann/Maxwell Distributions

$$\circ \quad P(\underline{q}) = \frac{1}{Q} \exp\left[-\frac{E(q)}{kT}\right]$$

- Q is the normalization constant
- $\circ~$ Replacing E(q) for kinetic energy we arrive at Maxwell Distribution

$$\circ P(\underline{\nu}) \propto \exp\left[-\frac{m|\underline{\nu}|^2}{2kT}\right]$$

Brownian Dynamics and Stochastic Differential Equations

- velocity autocorrelation function

$$\circ \quad C_{V_x}(t \ge 0) \approx C_{V_x}(0) e^{-t/\tau_{V_x}} \quad \tau_{v_x} = \frac{2\rho R^2}{9\mu}$$
$$\circ \quad \langle V_x(t) V_x(0) \rangle = 2D\delta(t)$$

- Dirac Delta Function

$$\circ \quad \delta(t) = \lim_{\sigma \to 0} \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{t^2}{2\sigma^2}\right]$$
$$\circ \quad \int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0)$$

- Langevin equation
- Wiener process
- Stochastic Differential equations
 - Explicit Euler SDE method

$$\circ \quad x(t+\Delta t)-x(t)=-\frac{1}{\zeta}\left(\frac{dU}{dx}\Big|_{x(t)}\right)(\Delta t)+[2D]^{1/2}(\Delta W_t)$$

- Ito's Stochastic Calculus
 - Example: Black-Scholes
 - Fokker-Planck
 - Einstein Relation
 - Brownian motion in multiple dimensions
- MCMC
 - Stat Mech example
 - Metropolis recipe (pg497)
 - Example: Ising Lattice
 - Field theory
 - Monte Carlo Integration
 - Simulated annealings
 - Genetic Programming

Bayesian Statistics and Parameter Estimation

Goal of this material is to draw conclusions from data ("statistical inference") and estimate parameters. Basic definitions

- Predictor variables: $\underline{x} = [x_1 x_2 x_3 \dots x_M]$
- Response variable: $\underline{y}^{(R)} = [y_1 \ y_2 \ y_3 \ \dots \ y_L]$
- $\underline{\theta}$: model parameters

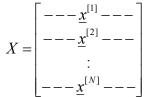
Main goal: match model prediction to that of the observed response by selecting $\underline{\theta}$.

Single-Response Linear Regression

- set of predictor variables, known a priori: $\underline{x^{[k]}} = [x_1^{[k]} x_2^{[k]} x_3^{[k]} \dots x_M^{[k]}]$, for the kth experiment
- measurement y^[k]
- assume a linear model: $y^{[k]} = \beta_0 + \beta_1 x_1^{[k]} + \beta_2 x_2^{[k]} + ... + \beta_M x_M^{[k]} + \varepsilon^{[k]}$
- the error in $\boldsymbol{\epsilon}^{[k]}$ is responsible for the difference between model and observed
- define $\underline{\theta} = [\beta_0 \ \beta_1 \ \beta_2 \dots \beta_M]^T$
- response is:

$$y^{[k]} = \underline{x}^{[k]} \cdot \underline{\theta}^{(true)} + \varepsilon^{[k]}$$
$$\hat{y}^{[k]} = \underline{x}^{[k]} \cdot \underline{\theta}^{(true)}$$

- model prediction is:
- define design matrix X, which contains all information about every experiment (with different predictor variables)



- vector of predicted responses:

$$\underline{\widehat{y}}(\underline{\theta}) = \begin{bmatrix} \underline{\widehat{y}}^{[1]}(\underline{\theta}) \\ \underline{\widehat{y}}^{[2]}(\underline{\theta}) \\ \vdots \\ \underline{\widehat{y}}^{[N]}(\underline{\theta}) \end{bmatrix} = X\underline{\theta}$$

Linear Least Squares Regression

- minimize sum of squared errors:

$$S(\underline{\theta}) = \sum_{k=1}^{N} \left[y^{[k]} - \widehat{y}^{[k]}(\underline{\theta}) \right]^2$$

- First derivative = 0, 2nd derivative is > 0, using these conditions with above equation you can derive a linear system
- $(X^T X)\underline{\theta}_{LS} = X^T \underline{y} \rightarrow \underline{\theta}_{LS} = (X^T X)^{-1} X^T \underline{y}$ (review point?)
- X^TX, contains information about experimental design to probe the parameter values
- $X^T X$ is a real, symmetric matrix that is positive-semidefinite
- Solving this is through standard linear solving, or QR decomposition or some other method
- All this estimates parameters, but does not give us accuracy of our estimates

Bayesian view of statistical inference

- Statement of belief (especially in random number generators)

Bayesian view of single-response regression

- Begin with $y^{[k]} = \underline{x}^{[k]} \cdot \underline{\theta}^{(true)} + \varepsilon^{[k]}$
- When we repeat this experiment multiple times, we get a vector $\underline{\epsilon}$
- With Gauss-Markov Conditions: $E(\varepsilon^{[k]}) = 0 \quad \operatorname{cov}(\varepsilon^{[k]}, \varepsilon^{[j]}) = \delta_{kj}\sigma^2$
- We also assume that our error is normally distributed
- Probability of observing some response y

$$\circ \quad p(\underline{y} \mid \underline{\theta}, \sigma) = \left(\frac{1}{\sqrt{2\pi}}\right)^{N} \sigma^{-N} \exp\left[-\frac{1}{2\sigma^{2}} S(\underline{\theta})\right]$$

- We use Bayes' Theorem to get probability of $\underline{\theta}$ and σ
- Posterior density: $p(\underline{\theta}, \sigma | \underline{y}) = \frac{p(\underline{y} | \underline{\theta}, \sigma)p(\underline{\theta}, \sigma)}{p(\underline{y})}$
- $p(\underline{y})$ is a normalizing factor
- we redefine $p(\underline{y} | \underline{\theta}, \sigma)$ to $l(\underline{\theta}, \sigma | \underline{y})$
- in the Bayesian framework we want to maximize posterior density
- Non-informative priors: $p(\underline{\theta}, \sigma) = p(\underline{\theta}) p(\sigma)$ $p(\underline{\theta}) \sim c$ $p(\underline{\theta}) \propto \sigma^{-1}$

Nonlinear least squares

- the treatment via least squares still works, we just use numerical optimization, utilizing a cost function, to get there: (**review point?**)

-
$$F_{\cos t}(\underline{\theta}) = \frac{1}{2} S(\underline{\theta}) = \frac{1}{2} \sum_{k=1}^{N} \left[y^{[k]} - f(\underline{x}^{[k]}; \underline{\theta}) \right]$$

- use of linearized design matrix
- Hessians (first order approximation to get to X^TX). Remember to get convergence, approximate Hessian needs to be positive-definite.
- Levenberg-Marquardt method: ill-conditioned systems

Generating Confidence Intervals

- t-statistic

$$\circ \quad t \equiv \frac{\overline{y - \theta}}{\left(s / \sqrt{N}\right)}$$
$$\circ \quad p(t | v) \propto \left[1 + \frac{t^2}{v}\right]^{-\frac{(v+1)}{2}}$$

- \circ $\,$ in the limit that ν approaches infinity, t-distribution reduces to Normal distribution
- confidence intervals for model parameters

$$\circ \quad \theta_{j} = \theta_{M,j} \pm T_{\nu,\alpha/2} s \left\{ X^{T} X \Big|_{\theta_{M}} \right\}_{jj}^{-1}$$

$$\circ \quad \nu = N - \dim(\theta)$$

MCMC in Bayesian Analysis