
10.34: Numerical Methods Applied to Chemical Engineering
Prof. K. Beers

Solutions to Problem Set 8: Brownian Dynamics and Monte
Carlo Simulation

Mark Styczynski, Ben Wang

Problem 1. Brownian motion in an external field
Consider the Brownian motion in the x-direction of a spherical particle of radius Rp and
density ρp moving in a Newtonian fluid of viscosity μf. Stokes’ law gives a drag constant
of 6 f pRζ πμ= . The particle experiences an external potential energy field U(x) such that
the force imparted to the particle by the field is –(dU/dx). Let us say that the fluid itself is
moving in the x-direction with a velocity vf. With a random force FR(t) due to collisions
with individual fluid molecules, Newton’s second law of motion for the particle is

() ()x
x f R

dv dUm v V
dt dx

ζ= − − − + F t

As shown in class, the mass of a particle, 34
3 f pm πρ= R , becomes negligibly small

compared to the drag constant 6 f pRζ πμ= when Rp is very small. This results in

extremely short velocity correlation times p
mτ
ζ

= . If we are concerned only with the

observed motion of the particle on scales long compared to τp, we can neglect the inertial
effects completely by taking the limit m 0 while holding ζ constant. In this limit, the
motion of the particle follows

()0 (x F R
dUv V F t
dx

ζ= − − − +)

Upon rearrangement and multiplying by dt, using dx = vxdt, this yields
1 1 ()f R

dUdx V dt F t dt
dx

ζ ζ− −⎡ ⎤= − +⎢ ⎥⎣ ⎦

As shown in class, in the case where vf = 0, U(x) = 0, we get the correct statistical
properties of the random displacement by simulating the SDE (Stochastic Differential
Equation)

()
1
22 tdx D dW=

For a finite time step Δt, we have the simulation algorithm

() () ()
1
22 tx t t x t D W+ Δ − = Δ

ΔWt is a random number generated at each time step with

()tW t θΔ = Δ ()
2

21
2

P e
θ

θ
π

−

=

ΔWt is drawn from a normal distribution with a mean of zero and a variance of σ2 = Δt.

Therefore, to agree with this limiting case, we write the SDE for the particle motion in a
moving fluid and an external field as

()
()

1
1 22f t

x t

dUdx V dt D dW
dx

ζ −
⎡ ⎤

= − +⎢ ⎥
⎢ ⎥⎣ ⎦

Which yields the simulation algorithm

() ()
()

() ()
1

1 22f t
x t

dUx t t x t V t D W
dx

ζ −
⎡ ⎤

+ Δ − = − Δ + Δ⎢ ⎥
⎢ ⎥⎣ ⎦

As shown in class, the drag constant and the diffusivity are related by Einstein’s relation
bk TD
ζ

=

Part 1.A.
Considering the SDE above, we see that if we had no random force, we would have a

deterministic velocity of the particle equal to
()

1
p f

x t

dUv V
dx

ζ −= − . So, the deterministic

(non-random) part of the SDE appears to describe convective motion, and the random
part (as we have seen) describes diffusive motion. This appears to suggest that the
probability distribution p(t,x) follows a convection/diffusion equation

()
2

2,p
p pv p t x D
t x

∂ ∂ ∂⎡ ⎤= − +⎣ ⎦∂ ∂ ∂x

In fact, it is shown in the text that for a system described by the SDE
() (), , tdx a t x dt b t x dW= +

The probability distribution is governed by a corresponding Fokker-Planck equation

() () () (){ }
2

2

2

1, , , ,
2

p a t x p t x b t x p t x
t x x

∂ ∂ ∂
= +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∂ ∂ ∂

Here, you are asked to perform a number of Brownian dynamics simulations to
demonstrate that the probability distribution does indeed follow this convection/diffusion
equation in the case of a constant fluid velocity vf and in the absence of an external field,
U(x) = 0.

If we release a particle at x = 0 at time t = 0, the initial condition is p(0,x) = δ(x).

1.A.1. First, show that the solution of the convection/diffusion equation is

()
()()

2

221,
2

x

p t x e
μ

σ

σ π

− −

= fV tμ = 2 2Dtσ =

Well, note that the question just asks you to “show” that the solution is such. Thus, I’ll
only be presenting here a demonstration that this is, indeed, the solution; this will be
sufficient for full credit for this part. If you were feeling saucy and decided to actually
give a proper derivation, then more power to you.

Looking at the equation

()
2

2,p
p pv p t x D
t x

∂ ∂ ∂⎡ ⎤= − +⎣ ⎦∂ ∂ ∂x
 where

()

1
p f

x t

dUv V V
dx

ζ −
f= − =

We see that all we need to do is take the individual derivatives and make sure that
everything cancels. We’ll use some intuition in our grouping of terms: derivatives of p
are likely to equal p times some factor, since there is an exponential term in p. So…

() () ()

() () ()

()

2

2 2 2

22

2

1, ,
4 2
2 1, ,
4 2

1,
4 4 2

f

f f

f

x V tp p t x p t x
t t Dt t

x V tx V t
p t x p t x

t Dt
Vxp t x

Dt D t

− −∂ ∂
= −

∂ ∂
− − +∂

= −
∂
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

t

() ()

() ()
() () ()

2 2 2

2 2 2

2
,

4
,

2
4

2 2,
2 2 ,

4 4

f f

f f

f
f

x V tx V tp p t x
x x Dt

p t x
x V tx V t

Dt x
V t xp t x

x V t p t x
Dt Dt

− − +∂ ∂
=

∂ ∂
− ∂

= − +
∂

−− ⎛ ⎞
= − = ⎜ ⎟

⎝ ⎠

()

() ()

2

2

2

2 2
,

4

2 21, ,
2 4

f

f

V t xp p p t x
x x x x Dt

V t x
p t x p t x

Dt Dt

⎡ −⎛ ⎞∂ ∂ ∂ ∂
= = ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ⎝ ⎠⎣ ⎦

−⎛ ⎞−⎛ ⎞= + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎤

Substituting those into the convection/diffusion equation, we get

() () () ()
222

2

2 2 2 21 1, , , ,
4 4 2 4 2 4

f f
f

V V t xxp t x V p t x D p t x p t x
Dt D t Dt Dt Dt

fV t x⎡ ⎤⎛ ⎞ ⎡ − ⎤ −⎛ ⎞ ⎛ ⎞−⎛ ⎞− − = − + +⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎣ ⎦
We can divide everything through by p(t,x) and simplify the last term to get

2 2 222

2 2

2 2 4 8 41 1
4 4 2 4 2 16

f ff ff V x V t V t V xt xVx
Dt D t Dt t Dt

− −
− − = − +

2+

2

Then we clear out the denominators by multiplying through by 4Dt2

2 2 2 2 2 2 22 2 2 2 2
f ff f fx V t Dt V xt V t Dt V t V xt x− − = − − + − +

Which can be rearranged to yield
2 2 2 2 2 22 2 2 2 2 2f f f fx V t Dt V xt x V t Dt V xt− − + = − − +

Which is a true equation, since all terms cancel out to yield 0 = 0.

And yes, it was OK if you used Mathematica or some symbolic calculus program to do
all of the manipulations for you, as long as you included that code or screenshots of that

program after it did the calculations for you so that we know you didn’t just pull it out of
thin air.

1.A.2. Next, perform a large number of Brownian dynamics simulations of individual
particles for the case D = 1, Vf = 1. Using the MATLAB histogram routines, generate
approximate probability distributions p(t,x) at t = 0.5, 1, 2, 3 from the random
trajectories x(t) that you generate in the simulations. Plot these vs. the analytical p(t,x)
to demonstrate that indeed the Brownian dynamics simulations result in the correct
p(t,x). Store your program as username_HW8_1A.m.

OK, so here we’re just doing a very straightforward problem. You have already been
given the simulation equations and the values of all of the appropriate variables. You can
either remove the (dU/dx)/ζ term from your equations in your code, or just set ζ to some
arbitrary non-zero number since the zero value of dU/dx will then remove its effect.

For Monte Carlo simulations, it is ideal to do a lot of trials. To get a fairly smooth curve,
you need to damp out the random fluctuations caused by your sampling. To do that, you
should run many trials. For instance, if you are using 50 bins for your histogram and you
only run 1000 trials, that the average bin will have 20 occurrences. With such a low
frequency, it is easy for random fluctuations to cause slight deviations from the expected
distribution. At the same time, though, we would like our programs to run as quickly as
possible, so we don’t want to run too many trials.

One thing to keep in mind for this task is that since we are running the commands in the
same loop tens of thousands (or more) times, it behooves us to make only the most
necessary commands be in the loop. For instance, if we needlessly re-assign a variable
every time through the loop, that will take up extra time. If, on the other hand, we assign
the variable outside of the loop, then we can cut down on the computational expense.
Similarly, if you use a separate function to calculate your update, it is easiest if you don’t
bother to unpack your variables. What I mean by this is that if you pass in a bunch of
parameters in a structure called Param, and each time you are in the function you say that
x = Param.x, y = Param.y, theta = Param.theta, etc., then you are executing each of those
thousands of times when they don’t really need to be executed. Instead, you should just
put Param.x, Param.y, Param.theta, etc., into your function. Though this makes your
code harder to read, it makes the program run faster.

In fact, this is a consistent pattern throughout computational work: code that is easy to
read is frequently suboptimal in execution time. Advanced computer languages and
compilers attempt to circumvent these problems for you by intelligently optimizing your
code when they assemble your program; in a case like this, though, it pays to note small
ways to optimize your code and turn a 90-second execution time into a 10-second
execution time. In my code, I have tried for a balance… by not outsourcing functions
and including them “inline” in the loops, things may be a little faster than they otherwise
might be, though perhaps with a little redundancy in my code. At the same time, though,
I’m striving for legibility, even at the cost of storing extra variables.

Oh, one final thing to note: you may see that I start off by defining my “storage” array
beforehand. This isn’t strictly necessary, as Matlab can automatically extend the array
for you. However, each time Matlab tries to extend an array, behind the scenes it is
reallocating the array, a rather time-intensive process. This can produce a many-fold,
even order-of-magnitude speedup for array that are particularly large.

That’s it. The actual coding for this part isn’t too tricky. Here’s my sample code, and a
graph that yours should look something like. The runtime for this program is about 30
seconds. The second figure shows how fewer trials will give the same trend, but with
more noise.

% Mark Styczynski
% 10.34
% HW 8

% Problem 1.A.2.

clear all; close all;

% PDL> Set variables.
dUdx = 0;
D = 1;
Vf = 1;
deltaT = .001;
zeta = 1; % Not needed for now, so set to arbitrary number
numTrials = 50000;

% PDL> Set initial state and allocate storage matrix.
x = 0;
storage = zeros(4,numTrials);

% PDL> Use tic and toc to keep track of my computation time
tic
% PDL> Perform a number of independent trials
for j = 1:numTrials,
 % PDL> Re-initialize each time.
 x = 0;

 % PDL> Run until desired times, then record sample.
 for i=1:.5/deltaT,
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + (2*D)^.5*deltaWt;
 end

 storage(1,j) = x;

 for i=1:.5/deltaT,
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + (2*D)^.5*deltaWt;
 end

 storage(2,j) = x;

 for i=1:1/deltaT,
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + (2*D)^.5*deltaWt;
 end

 storage(3,j) = x;

 for i=1:1/deltaT,
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + (2*D)^.5*deltaWt;
 end

 storage(4,j) = x;
end
toc

% PDL> Calculate theoretical curves.
tVals = [.5 1 2 3];
x = linspace(-10,10,10000);
for i=1:length(tVals),
 mu = Vf*tVals(i);
 sigma = sqrt(2*D*tVals(i));
 probPlot(i,:) = 1/sigma/sqrt(2*pi)*exp((-(x-mu).^2)./(2*sigma^2));
end

% PDL> Use histogram functions to produce probability distribution
% function.
numBins = 30;
for i=1:4,
 [freq(i,:), bins(i,:)] = hist(storage(i,:),numBins);
 area(i) = trapz(bins(i,:),freq(i,:));
end

%PDL> Plot up results.
firstArray = ['b-';'g-';'r-';'k-'];
secondArray = ['bx';'gx';'rx';'kx'];
figure(1);
for i=1:4,
 plot(x,probPlot(i,:),firstArray(i,:));

 hold on;
 % Don't forget to normalize...
 plot(bins(i,:),freq(i,:)/area(i),secondArray(i,:));
end
xlabel('x')
ylabel('p(x)')
title('Particles in fluid flow with no external force, 50,000 trials')
legend('Theoretical, t = 0.5','Simulation, t = 0.5',...
 'Theoretical, t = 1','Simulation, t = 1',...
 'Theoretical, t = 2','Simulation, t = 2',...
 'Theoretical, t = 3','Simulation, t = 3');

% Alternate plot, if we had less runs. Note it's noisier.
numBins = 30;
freq = [];
bins = [];
for i=1:4,
 [freq(i,:), bins(i,:)] = hist(storage(i,1:10000),numBins);
 area(i) = trapz(bins(i,:),freq(i,:));
end

firstArray = ['b:';'g:';'r:';'k:'];
secondArray = ['b-';'g-';'r-';'k-'];
figure(2);
for i=1:4,
 plot(x,probPlot(i,:),firstArray(i,:));
 hold on;
 % Don't forget to normalize...
 plot(bins(i,:),freq(i,:)/area(i),secondArray(i,:));
end
xlabel('x')
ylabel('p(x)')
title('Particles in fluid flow with no external force, 10,000 trials')
legend('Theoretical, t = 0.5','Simulation, t = 0.5',...
 'Theoretical, t = 1','Simulation, t = 1',...
 'Theoretical, t = 2','Simulation, t = 2',...
 'Theoretical, t = 3','Simulation, t = 3');

Part 1.B.
Now, set vf = 0 and let us introduce a spatially-periodic potential
() () 2

sinaU x E xπ= ⎡ ⎤⎣ ⎦
Of periodicity U(x±m) = U(x), m = 0, 1, 2, 3, … . This potential consists of a sequence of
energy barriers of height Ea each separated by a distance of one.

Perform a Brownian dynamics simulation using periodic boundary conditions on the
domain 0 ≤ x ≤ 1 in which at any time the particle exits the domain, it is shifted by ±1 to
bring it back inside the domain. Since the potential energy is also periodic, this shifting
has no deleterious effect on the simulation, and it enables us to compare the measured
probability distribution P(x) over the course of the simulation with the Boltzmann
distribution

()
()

()1

0

b

b

U x
k T

U x
k T

eP x

e d

−

−
=

∫ x

In your Brownian dynamics simulation, you should not start sampling the distribution of
x until you have run the simulation for a while to “equilibrate” the system. Simulate the
motion of a particle at kbT = 1, Ea = 1, D = 1 and demonstrate that the Brownian
dynamics simulation samples properly from the equilibrium distribution. That is, the
probability distribution measured from the trajectory x(t) agrees with the Boltzmann
distribution. Store your program as username_HW8_1B.m.

Well, the first thing to note is that using equation 9, bk TD
ζ

= , we know that ζ = 1.

Everything else is fairly straightforward; the parameters have been given to you. You do
need to realize that dU/dx must be recalculated at each step because it varies with x. You
also need to play with your equilibration time a little bit, as well as your time steps. For
each of these, you should decide on their values similarly to how you decided on the
number of grid points in a finite difference approximation: gradually change them until
you see no difference in your solution. For instance, if your time step is too big (say even
0.01), then the same number of equilibration steps as a smaller time step (say 0.001) will
not give you the correct result… instead, the curve will be not quite equilibrated. So,
these must be adjusted appropriately until the expected behavior is observed. There are
many correct values for these parameters that will achieve this, you just needed to find
one set. Finding these appropriate values is the key part of this problem.

It may also be worth noting that the correct derivative dU/dx is

(){ } () ()

() ()

2
sin 2 sin sin

2 sin cos

a a

a

dU d dE x E x x
dx dx dx

E x x

π π π

π π π

= =⎡ ⎤⎣ ⎦

=

When you integrate your curves, note that you must supply the x vectors to trapz; if you
only supply the frequency or probability vector, you’ll be some (significant) constant
factor off in the scale of your probabilities, and the area would not integrate to 1.

I did multiple trials just to get a smoother graph; one trial would have given a little more
jagged of a graph. Another alternative to smooth out would be to just sample for a lot
longer; this would produce the same result.

Finally, for your graph… if your graph consistently follows the trend of the theoretical
graph but is offset slightly above, this is acceptable (if not expected). This is because we
are not able to properly normalize because there are no bins centered at 0 or 1; this means
that when using trapz, we are essentially integrating from “almost 0” to “almost 1”, and
so we are missing some area. The area calculated by trapz is then smaller than the real
area, and our curve will be shifted slightly up. This effect can be decreased by using

more bins (so that we integrate closer to 0 and 1, capturing more of the area) or by
extrapolating a point at 0 and 1 from the curve assuming a derivative equal to zero. But
the bins are likely to be unevenly spaced by default, making that extrapolation a little
more difficult and thus entirely optional. Brownie points for anyone who did that,
though.

That’s about it. Here’s a figure and the code that generated it.

% Mark Styczynski
% 10.34
% HW 8

% Problem 1.B.

clear all; close all;

% PDL> Set variables.
D = 1;
Vf = 0;
deltaT = .001;
kbT = 1;
zeta = kbT/D;
Ea = 1;

% Base our number of points on the simualation time and the
% deltaT.

numEquil = round(150/deltaT);
numPoints = round(150/deltaT);
numTrials=100;

x = 0;

% PDL> Define array here instead of constantly redefining and
% making MATLAB reallocate it.
storage = zeros(numTrials,numPoints);

tic

% PDL> Perform a number of trials.
for j = 1:numTrials,
 x = 0;
 % PDL> Wait a while for the system to equilibrate.
 for i=1:numEquil,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 if (x ~= 1),
 x = mod(x,1);
 nd e
 end
 % PDL> Then sample from the system.
 for i=1:numPoints,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 if (x ~= 1),
 x = mod(x,1);
 end
 storage(j,i) = x;
 end
end
toc

% Rearrange the storage matrix so that it's just an array.
storage = reshape(storage,1,numTrials*numPoints);

% PDL> Calculate the theoretical curve.
x = linspace(0,1,1000);
probInitial = exp(-Ea*(sin(pi*x)).^2./kbT);
norm = trapz(x,probInitial);
probPlot = probInitial/norm;

% PDL> Use hist functions to create a probability density function.
numBins = 100;
[freq, bins] = hist(storage,numBins);
area = trapz(bins,freq);

figure(1);
plot(x,probPlot,'k-');
hold on;
plot(bins,freq/area,'r-');

xlabel('x')
ylabel('p(x)')
title('A particle in periodic potential and boundary conditions')
legend('Boltzmann distribution','Brownian simulation')

Part 1.C.
Consider again the same external potential, but now do not use the periodic boundary
conditions. Instead, generate trajectories x(t) that are not shifted in space to remain in
[0,1]. In the limit Ea << kbT, the energy barriers are negligibly small and the particles
essentially undergo “regular” diffusion. But, when Ea becomes comparatively large
relative to kbT, we expect the barriers to be difficult to overcome such that the particle
trajectories become “trapped” between barriers for a long time until they are finally able
to “jump” to the next energy well. If we then continue the simulation over very long
periods of time such that each trajectory has experienced many jumps, and we measure
at various times the mean squared displacement, <x2(t)>, we can estimate the effective
diffusivity, Deff, in the presence of the barriers from the relation <x2(t)> = 2 Defft as t
∞.

Perform this calculation to measure Deff when D = 1 for Ea = 0.1, 0.5, 1, 2, 3, 4, 5 when
kbT = 1 and plot ln Deff vs. Ea. A reasonable prediction of how the effective diffusivity
should be affected by the barrier height is

a

b

E
k T

effD De
−

=
Compare the results of your calculation to this functional form to see if it is an accurate
description of the effect of energy barriers on long-time diffusive motion. Store your
program as username_HW8_1C.m.

OK, so first we need to remove the periodic boundary condition from our code. We also
need to know how to calculate <x2(t)>; this is rather simple, actually. Though you could
have created a probability distribution function using histogram routines, this was
unnecessary. All you need to do is calculate the average of x2, which in this case is the
sum of all x2 values divided by the number of samples taken. This is equivalent to taking

()2
i i

i
x P x∑ , because in this case the probability of each xi is just one divided by the

number of samples. This is actually more accurate than the histogram method since it
does not put items into bins before calculating an average.

The equation that Dr. Beers gives,
a

b

E
k T

effD De
−

= , can be reduced to

ln ln ln
a

b

E
k T

eff aD D e
−

= + = −E since D = 1 and kbT = 1.

We see that the plots do not agree; that is, the predicted effect of barrier height on
effective diffusivity is not exactly the equation that Dr. Beers gave you. There is a
different slope at the very least, and probably even a different functionality. As was
mentioned in class, this may have to do with differences between activation
energy/transition state theory and our methods of simulation.

Note that there are different methods to calculate the effective diffusivity given a set of
<x2(t)> values; Dr. Beers mentioned in class that you can do a simple polynomial or least
squares fit; I found it easier to divide the <x2(t)> values by the time at which they were
taken and to then take the simple arithmetic mean of the resulting Deff values. Either way
is valid, and they should yield approximately equal results given equal sampling.
However, it is a little bit harder to get good sampling for the line-fitting method, as the
best fits will occur over a wider range of time. I ran the code for the same number of
iterations for both methods, but that gives significantly fewer samples for the line-fitting
method, so the curve looks more jagged. The main point is there, though: either method
will produce approximately the same curve, which does not agree with the equation that
Dr. Beers proposed.

% Mark Styczynski
% 10.3 4
% HW 8

% Problem 1.C.

clear all; close all;

% PDL> Set variables
D = 1;

Vf = 0;
deltaT = .001;
kbT = 1;
zeta = kbT/D;
numTrials = 100;
equilTime = 100;
EaList = [.1 .5 1 2 3 4 5];

% PDL> Set up our matrix for storage
fitStorage = zeros(length(EaList),6,numTrials);
samplerStorage = zeros(length(EaList),numTrials);

% PDL> Perform calculations for each activation energy
for k=1:length(EaList),
 tic
 Ea = EaList(k)
 x = 0;
 % PDL> Perform a number of different trials to get a
 % representative value of <x^2>
 for j = 1:numTrials,
 x = 0;
 % PDL> Let the system equilibrate so t --> infinity
 for i=1:equilTime/deltaT,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 end
 % PDL> Now start recording specific time points
 storage(k,1,j) = x;
 % Let the system go for a little while before next time point.
 for i=1:10/deltaT,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 % PDL> Also record many consecutive time points, using
 % the equation <x^2>/(2*t) = Deff.
 % So we are accumulating a bunch of x^2 values here...
 samplerStorage(k,j) = samplerStorage(k,j) +
x^2/2/(i*deltaT+equilTime);
 end
 % And then we divide by the number of values to get the
average.
 samplerStorage(k,j) = samplerStorage(k,j)/(10/deltaT);
 storage(k,2,j) = x;
 % Perform a few more iterations to find more time points.
 for i=1:10/deltaT,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 end
 storage(k,3,j) = x;
 for i=1:10/deltaT,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 end

 storage(k,4,j) = x;
 for i=1:10/deltaT,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 end
 storage(k,5,j) = x;
 for i=1:10/deltaT,
 dUdx = Ea*2*sin(pi*x)*cos(pi*x)*pi;
 deltaWt = randn()*sqrt(deltaT);
 x = x + (Vf-dUdx/zeta)*deltaT + sqrt(2*D)*deltaWt;
 end
 storage(k,6,j) = x;
 end
 toc
end

for k=1:length(EaList),
 for i=1:6,
 % PDL> Calculate <x^2> for the slope-fitting method.
 DeffT(k,i) = mean(storage(k,i,:).^2)/2;
 % Alternative way of calculating average x^2 using
histograms...
 % numBins = 30;
 % [freq(k,i,:), bins(k,i,:)] = hist(storage(k,i,:),numBins);
 % area(k,i) = trapz(bins(k,i,:),freq(k,i,:));
 % Deff2(i) =
trapz(bins(i,:),freq(i,:)/area(i).*(bins(i,:).^2))/2/(i+equilTime-1);
 end
 % PDL> Find Deff as slope of Deff*t vs. t
 timeArray = linspace(equilTime,equilTime+50,6);
 fit = polyfit(timeArray,DeffT(k,:),1);
 DeffFit(k) = fit(1);
end

% PDL> Plot up results.
figure(1)
plot(EaList,-EaList,'k-')
hold on
plot(EaList,log(mean(samplerStorage')),'b-')
plot(EaList,log(DeffFit),'r-')
xlabel('E_a')
ylabel('ln(D_e_f_f)')
title('Dependence of D_e_f_f on E_a, D = 1')
legend('Theoretical','Brownian, using mean D_e_f_f', ...
 'Brownian, using mean-squared D_e_f_f','Location','SouthWest')

Problem 2. Metropolis Monte Carlo Simulation

Consider again the 1-D system with the periodic potential energy
() () 2

sinaU x E xπ= ⎡ ⎤⎣ ⎦

Write a program to sample the NVT equilibrium distribution of x using Metropolis Monte
carlo for the case Ea = 1, kbT = 1, and show that the results agree with the Boltzmann
distribution

()
()

()
1

0

b

b

U x
k T

U x
k T

eP x

e d

−

−
=

∫ x

Where again you use periodic BC to maintain the particle within 0 ≤ x ≤ 1.

Here we implement a Metropolis Monte Carlo method to sample from the NVT
distribution. To make an iterative move from our current point, we need to add some
random number to our value of x. In class Dr. Beers suggested that we sample from a
normal distribution; in the book and in some sample code he used a uniform distribution.
Either of those should suffice for this case. Of course, be sure that if you use the uniform
distribution with rand() that you recenter it around zero by subtracting 0.5 from whatever
value it gives you.

As we know from the book, the update steps for Metropolis Monte Carlo are accepted
dependent upon the ratio of the probability of the proposed state to the probability of the
current state. Since these two probabilities have the same normalization factor, this can
be directly calculated as

()

()

() ()
new

new curr
b

b

curr

b

U x
U x U xk T

k T
U x

k T

e e

e

α

−
⎡ ⎤− −⎣ ⎦

−
= =

We then select a number, u, from a uniform distribution over [0,1]. If u ≤ min{1, α},
then we accept the proposed step and sample from it. Otherwise, we stay at the current
step and sample from it.

Note that the same issues with integration for the purposes of normalizing the probability
distribution function still apply, so it’s OK if our graph is offset from the Boltzmann
distribution slightly upward.

Here is the resulting figure and the code to produce it. The program takes about 20
seconds to run.

% Mark Styczynski
% 10.34
% HW8
% Problem 2. Metropolis Monte Carlo simulation

clear all; close all;

% PDL> Set variables.
Ea = 1;
kbT = 1;
stdDevFactor = .2;
numEquil = 1e7;
numSteps = 1e7;
x = 0;
freq = 1;

% Create an array to store the x values, to speed things up.
storage = zeros(1,floor(numSteps/freq));
expFactor = Ea/kbT;
j=0;
tic

% PDL> First let the system equilibrate to make sure we're at a
% state that is relatively likely.
for i=1:numEquil,
 % Get a new point.
 new_x = x+(rand()-0.5)*stdDevFactor;

 % Apply the BCs.
 if (new_x ~= 1),
 new_x = mod(new_x,1);
 end
 % Calculate the acceptance probability.
 probRatio = exp(-expFactor*((sin(new_x*pi))^2-(sin(x*pi))^2));
 acceptProb = min(1,probRatio);
 acceptRand = rand();
 if acceptProb >= acceptRand
 x = new_x;
 nd e
end
toc
tic
% Now we start sampling.
for i=1:numSteps,
 new_x = x+(rand()-0.5)*stdDevFactor;
 % Apply BCs
 if (new_x ~= 1),
 new_x = mod(new_x,1);
 end
 % Calculate probabilitiy.
 probRatio = exp(-expFactor*((sin(new_x*pi))^2-(sin(x*pi))^2));
 acceptProb = min(1,probRatio);
 acceptRand = rand();
 % Decide if we move or not.
 if acceptProb >= acceptRand
 x = new_x;
 end
 % Sample either way.
 storage(floor(i/freq)) = x;
end
toc

% PDL> Calculate theoretical distribution.
x = linspace(0,1,1000);
probInitial = exp(-Ea*(sin(pi*x)).^2./kbT);
norm = trapz(x,probInitial);
probPlot = probInitial/norm;

% PDL> Calculate probability distribution function using
% histogram routines.
numBins = 100;
[freq, bins] = hist(storage,numBins);
area = trapz(bins,freq);
figure(1);
plot(x,probPlot,'k-');
hold on;
plot(bins,freq/area,'r-');
xlabel('x')
ylabel('p(x)')
title('NVT ensemble for a particle in periodic potential and BC')
legend('Boltzmann distribution','Monte Carlo simulation',...
 'Location','Best')

Problem 3. Simulated annealing
Consider the cost function
() () () () ()20.5 cos sin 2 cos 3 sinF x x x x x xπ π π= + + + π

Plotted in the figure below.

Clearly, the cost function has many local minima, and it would be very difficult to find the
global minimum using the deterministic techniques that we developed in chapter 5.
Unfortunately, such irregular cost functions are not uncommon, especially when
attempting to compute the minimum energy geometry of a molecule or a crystal.

Write a program that uses simulated annealing to identify the global minimum from a
random initial guess. Store your program as username_HW8_P3.m and provide
directions for its use.

Yes, if you used Dr. Beers’s sample code from the website, you will get credit for this
part. However, if something went wrong somewhere in your program, you are much
more likely to be given partial credit for work that you did versus work that you
borrowed (with appropriate citations) from the website.

As for the specific problem… as detailed in the book, simulated annealing is essentially a
sequential set of MCMC problems designed to find the minimum of your function. (See
above for a brief explanation of the MCMC method.) Slowly, the “temperature”

parameter is lowered; as this happens, the routine is less likely to accept moves that result
in higher function values, but still leaves some non-zero chance. This method helps to
avoid (though does not eliminate) getting stuck in local minima.

It is important to note that simulated annealing still can get stuck in local minima. In
addition, it may be somewhat dependent on your initial guess (particularly if your
maximum displacement/move/jump size is relatively small). As such, it is best to run it
multiple times and see what the result is. Whatever single lowest function value you find
in any run is then the answer that you should return.

And as you can mostly see from the graph you were initially given, the correct minimum
for this system is x = 0.8566, F(x) = -1.4120. Here’s that figure again, and some fresh
code to find the solution.

% Mark Styczynski
% 10.34
% HW8
% Problem 3. Simulated annealing

% PDL> Set variables.
numRuns = 10;
numSteps = 1e6;
initKbT = 100;
maxDev = .5;

% PDL> Set an initial guess; this is just a placeholder to
% make sure that the references in the loop are OK.
bestX = 0;
bestF = .5*bestX^2+cos(pi*bestX)+sin(2*pi*bestX)+ ...
 cos(3*pi*bestX)*sin(pi*bestX);

tic

% PDL> Run a number of times to be more sure we get the global
% minimum.
for k=1:numRuns,
 % I decided to use random initialization points in a known range.
 x = (rand()-.5)*8;
 f = .5*x^2+cos(pi*x)+sin(2*pi*x)+cos(3*pi*x)*sin(pi*x);
 % PDL> Perform a number of MCMC runs with different temperatures.
 for j=1:numSteps,
 % PDL> Degrade to kbT (almost) 0 linearly... note that we
 % do not actually want to get to 0.
 kbT = initKbT*(numSteps+1-j)/numSteps;
 % PDL> Propose a new x
 newX = x + (rand() - 0.5)*maxDev;
 newF = .5*newX^2+cos(pi*newX)+sin(2*pi*newX)+ ...
 cos(3*pi*newX)*sin(pi*newX);
 % PDL> Find the probability of accepting it
 probRatio = exp(-(newF - f)/kbT);
 acceptProb = min(1,probRatio);
 acceptRand = rand();
 % PDL> Accept or reject
 if (acceptProb >= acceptRand)
 x = newX;
 f = newF;
 end
 end
 % PDL> See if we've found a new minimum.
 opts = optimset('Display','Off');
 [x, f] = fminunc(@(x) ...
 .5*x^2+cos(pi*x)+sin(2*pi*x)+cos(3*pi*x)*sin(pi*x), x, opts);
 if (f < bestF),
 bestF = f;
 bestX = x;
 end
end
toc

bestX
bestF

% PDL> Plot up the function and our result.
plotX = linspace(-4,4,1000);
plotF = .5*plotX.^2 + cos(pi*plotX) + sin(2*pi*plotX) + ...
 cos(3*pi*plotX).*sin(pi*plotX);
figure(1)
plot(plotX,plotF,'b-')
hold on
plot(bestX,bestF,'ko')

xlabel('x')
ylabel('F(x) = 0.5x^2 + cos(\pix) + sin(2\pix) + cos(3\pix)*sin(\pix)')
title('Simulated annealing solution of min(F(x))')

Problem 4. 4.A.2
Compute the value of the following definite integral using both dblquad and Monte Carlo
integration.

()
2 2 2

1 0
1

x

DI x y dydx⎡ ⎤= − +⎣ ⎦∫ ∫

Monte Carlo integration is explained in your book, particularly on pages 241-243 and
504. There are two different methods by which we can do this: one using an iterative,
Markov chain approach, and one using a simple uniform sampling approach. Most of
you likely used the latter, but I’ll present both here for completeness.

The uniform sampling approach is explained in chapter 4. Essentially, we just define a
hypercube that completely contains the space to be integrated and multiply the function
to be integrated, f, by an indicator function, Ω. The indicator function takes a value of
one if a sample point is in the space to be integrated and zero otherwise. We then draw
values at random from a uniform distribution across the entire hypercube and take the
sum of all samples’ function values times their indicator function. That is, we take f*Ω
for all samples and accumulate a sum. This sum is then divided by the number of
samples, yielding an “average” value for the function f over the hypercube. In the limit
that we have an infinite number of samples, we will have a sample from every point and
our average will be correct. We then need only multiply by the space of the hypercube to
get the appropriate integral.

The alternative approach, briefly explained on page 504 (beware typos, though), is to use
an iterative method. Here, as before in MCMC methods, we propose a new step each
time. Now, our probability function is defined as

()
[]()j

S

H x
P x

V
Ω

=

Where VS is the space being integrated (not necessary right now, as it will cancel in our
calculations), and HΩ is an indicator function with a value of 1 if we are in the space to be
integrated and 0 otherwise. Thus, assuming we start in the space to be integrated, then
the value of the ratio of P(xproposed)/P(xcurrent) is always either 1 or 0… that is, we
either definitely accept the sample if it is in the space, or definitely reject it if it is
not. If we reject it, we just sample the current point again. (See problem 2 for a
quick run-through of MCMC methods.) This time, the average function value that
we get will only be for the space to be integrated; in this case, we multiply this
average by the volume of the space to be integrated, not the volume of some
hypercube. (Of course, this does mean that we have to know that volume, which
may in some cases be non-trivial to calculate.)

And of course, the answer hasn’t changed from the previous assignment… you
should be getting 1.0612 for the area (or at least approximately that, depending on
your sample size). Here’s the code to do all of that… and now there’s only one
more assignment left.

function marksty_HW8_P4()

clear all; close all;

% PDL> Use code from the previous homework assignment.
dblquad_area = dblquad(@p4a2fun,1,2,0,sqrt(2))
manually_caclulated = 2/7*2^(7/2) - 2/3*2^(5/2) + 2/3*2^(3/2) - 2/7

% PDL> Set variables.
stdDevFactor = .1;
numEquil = 1e6;
x = [1.5 1];
hFunVal = hSigmaFun(x);
fTotal = 0;
sCounter = 0;
tic

% PDL> Set storage vector.
storage=zeros(numEquil,2);

% PDL> First do MCMC method.
% PDL> First let the system equilibrate.
for i=1:numEquil,
 new_x = x+(rand(1,2)-[0.5 0.5]);
 newHFun = hSigmaFun(new_x);
 % PDL> Calculate probabilities.
 % Don't need to worry about the denominator here.
 probRatio = newHFun/hFunVal;
 acceptProb = min(1,probRatio);
 acceptRand = rand();
 if acceptProb >= acceptRand,
 x = new_x;
 hFunVal = newHFun;
 end
end
% PDL> Now we sample from it.
for i=1:numEquil,
 new_x = x+(rand(1,2)-[0.5 0.5]);
 newHFun = hSigmaFun(new_x);
 % PDL> Calculate probabilities.
 % Don't need to worry about the denominator here.
 probRatio = newHFun/hFunVal;
 acceptProb = min(1,probRatio);
 acceptRand = rand();
 if acceptProb >= acceptRand,
 x = new_x;
 hFunVal = newHFun;
 end
 fTotal = fTotal + (x(1)-1)^2 + x(2)^2;

end
toc

% PDL> Calculate the average and the space being sampled
averageF = fTotal/numEquil;
volS = quad(@(x) sqrt(x),1,2);

% PDL> Multiply to get the integral
MCintegral = averageF*volS

% PDL> The slightly easier Monte Carlo integration...
% S is a rectangle from 1 to 2 in x and 0 to sqrt(2) in y
newFTotal = 0;
for i=1:numEquil,
 % PDL> Draw numbers from a uniform distribution
 x(1) = 1 + rand();
 x(2) = sqrt(2)*rand();
 newFTotal = newFTotal + hSigmaFun(x)*((x(1)-1)^2 + x(2)^2);
end

% PDL> Calculate the average and the space being sampled
aveF = newFTotal/numEquil;
newVolS = sqrt(2);

% PDL> Multiply to get the integral
newMCintegral = aveF * newVolS

end

% PDL> Function to integrate, from previous homework assignment.
function integrand = p4a2fun(x,y)

integrand = (x - 1).^2 + y^2;
multiplier = (y <= sqrt(x));
integrand = integrand.*multiplier;

end

% PDL> H_sigma function for doing both Monte Carlo methods.
function answer = hSigmaFun(x)
% PDL> Require sample to be in integrated space.
 if ((x(1) <= 2) && (x(1) >= 1) && (x(2) >= 0) && (x(2) <=
sqrt(x(1)))),
 answer = 1;
 else
 answer = 0;
 end
end

