
Problem Set 7 Initial Value Problems
10.34 Fall 2005, KJ Beers

Ben Wang, Mark Styczynski

November 7, 2005

Problem 1: 6.B.3

This is basically just a 1D BVP which we can solve using the method of finite
differences. We will come up with an equation corresponding to each grid point
and solve the entire system of equations with FSOLVE, since we have a
nonlinear system of equations with the exponential terms. We are also asked to
plot a few ancillary plots, introduce comparisons, and make some comments
about the physicalness of the Poisson-Boltzmann equation. We begin by looking
at the how the Debye length, λ, varies with [NaCl]:

()

2/1

2][2

=

NaClNq
Tk

ave

Broεελ (1)

Plotting this:

We are asked to answer whether or not it makes sense to have a Debye length
of 0.1 nm, and we answer that it is not. The debye length is the characteristic
length scale of this problem and it doesn’t make sense to have a continuum
model to describe the phenomenon when the length is on the order of the
charged species themselves.

Next we are asked to solve this boundary value problem (BVP) numerically.This
is relatively straightforward after all the non-dimensionalization and derivation
that professor Beers goes through. He arrives at:

() ()()ξφξφ

ξ
φ ee

d
d

−=− −

2
1

2

2

 (2)

with the following Dirichlet type boundary conditions:

() K
Tk
q

B

e =
Φ

= 00φ (3)

() 0=∞φ (4)

To derive the finite difference equations required for this equation we first look at
how we are to space our grid points. Why do we even care about this? Well if
we look at equation (4) which states that our boundary condition is defined at
infinity, we quickly realize that it is difficult to come up with a numerical solution
that includes an infinite number of grid points. Instead we come up with a
numerical approximation to infinity. Because we know we have a characteristic
length associated with this problem, λ, we can assume that most of what
happens occurs within one characteristic length. Therefore if we set infinity at
say 10λ, this will likely be sufficiently far enough from what occurs to represent
infinity. Now we have a range over which we can set up a grid.

However we have just said that, most likely, all of the fun occurs within the span
of one λ, we want a dense grid over this region where we can observe how the
solution varies here. Similarly we might want to put a sparse grid in the region
for length > λ, to save on computation time. And this is what we do here in this
solution. However if you chose not to include this different grid spacing, it is fine.

As long as you write the correct finite difference equations for your differential
equation you should be all good. First we look at the Laplacian term, and we
derive the finite difference terms generally for any grid-spacing:

2/12/1

2/12/1

−+

−+

−
−

=
ii

iii

d
d

ξξ
φφ

ξ
φ (5)

2
11

1

1

1

1

2/12/1

2/12/1
2

2

−+

−

−

+

+

−+

++

−
−
−

−
−
−

=
−

−
=

ii

ii

ii

ii

ii

ii

iii d
d

d
d

d
d

ξξ
ξξ
φφ

ξξ
φφ

ξξ
ξ
φ

ξ
φ

ξ
φ (6)

So combining this with the exponential terms we arrive at:

()ii

ii

ii

ii

ii

ii

ee φφ

ξξ
ξξ
φφ

ξξ
φφ

−+
−

−
−

−
−
−

= −

−+

−

−

+

+

2
1

2

0
11

1

1

1

1

 (7)

This equation is valid for all points i, not at i = 1, i = N+1 (for example 10λ). We
now treat each boundary condition individually.

For Dirichlet type boundary conditions, we just replace the value of φ at the
‘imaginary’ grid point, with the boundary value. For our problem, we look at our
first equation and replace the value of 0φ with K (as in equation (3)). We also
know that 00 =ξ at the boundary.

()ii ee

K
φφ

ξ
ξ
φ

ξξ
φφ

−+
−

−
−

−
−
−

= −

2
1

2
0

00
2

1

1

12

12

 (8)

For our boundary condition at infinity, we know that the value of φ = 0 at grid
point N+1. We write the following as:

()NN

NN

NN

NN

NN

NN

ee φφ

ξξ
ξξ
φφ

ξξ
φφ

−+
−

−
−

−
−
−

= −

−+

−

−

+

+

2
1

2

0
11

1

1

1

1

 (9)

We treat ξξξ ∆+=+ NN 1 . But there are other ways you can treat this.

We get a plot like the following:

A few notes about this graph: we plot it using semilogy because it is easier the
see the full range of different orders of magnitudes of wall potential. We can also

see that for values of 10 <<=
Φ K
Tk
q

B

e , ()ξφ shows an exponential decay, which

shows up as a linear plot in semilogy. As we increase K we observe a deviation
from that purely exponential behavior. At high values of K, the potential curves
tend to collapse onto one another, as the behavior is dominated by the
exponential term. At high debye lengths we observe an artifact as the curves
tend to diverge towards zero. This is because at 10λ, we set the value of φ = 0.

If we did not plot this in semilogy, your curves would look something like:

% benwang_P6B3.m
% Ben Wang
% HW#7 Problem #1
% due 11/7/05 9 am

% This routine will use the finite difference approximation to generate a
% system of nonlinear equations, solving the poisson-boltzmann equation

% ======= main routine benwang_P6B3.m
function iflag_main = benwang_P6B3();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

%PDL> specify parameters
param.qe = 1.602e-19; % [C] charge of electron
param.Nav = 6.022e23; % [] Avogradro's number
param.eps_0 = 8.854e-12; % [C^2/J-m] permittivity of free space
param.eps_r = 78; % [] dielectric constant for water
param.kB = 1.38e-23; % [J/K] Boltzmann's constant
param.T = 298; % [K] room temp
param.totaldebye = 10; % total debye lengths of simulation

%PDL> specify grid parameters

grid.N1 = 50; % number of grid points close to the wall
grid.N2 = 10; % number of grid points far away from wall

%PDL> specify NaCl concentration

num_curves = 10;
conc = logspace(-6,0,num_curves); % [M]
NaCl = conc*1000; % [mol/m^3]

%PDL> specify wall potential

big_phi = logspace(-2,2,num_curves)/param.qe*param.kB*param.T;
matrix = zeros(grid.N1+grid.N2,num_curves);

% plot debye length vs. [NaCl]
figure;
for i = 1:length(NaCl)
 param.debye = sqrt(param.eps_0*param.eps_r*param.kB*param.T/...
 (param.qe^2*param.Nav*(2*NaCl(i))));
 loglog(conc(i),param.debye,'s');
 hold on;
end

hold off;
xlabel('[NaCl] (M)');
ylabel('Debye Length (m)');

%PDL> specify discretization of grid

grid.domain = linspace(0,1,grid.N1+1);
grid.domain = grid.domain(2:end);
a = linspace(1,param.totaldebye, grid.N2+1);
grid.domain = [grid.domain a(2:end)]';

%PDL> call fsolve to solve system for nonlinear equations

for j = 1:length(big_phi)
 param.wallpotent = big_phi(j);
 guess= ones(grid.N1+grid.N2,1);
 [phi,f] = fsolve(@calc_func_P6B3, guess, [], param, grid);
 matrix(:,j) = phi;
end

% plot curves

figure;
for m = 1:num_curves
 x = grid.domain;
 y = matrix(:,m);
 semilogy(x,y,'-');
 hold on;
end
xlabel('Debye Lengths');
ylabel('Dimensionless wall potential');
title('Boundary Condition for Constant Wall Potential');

figure;
for m = 1:num_curves
 x = grid.domain;
 y = matrix(:,m);
 plot(x,y,'-');
 hold on;
end
xlabel('Debye Lengths');
ylabel('Dimensionless wall potential');
title('Boundary Condition for Constant Wall Potential');

return;

%======= subroutine calc_func_P6B3.m
function [f] = calc_func_P6B3(phi,param,grid)

N = length(phi);
f = zeros(N,1);
zeta = grid.domain;
phi;

% first calculate interior points
for k = 2:N-1
 delta_zeta_mid = 0.5*(zeta(k+1)-zeta(k-1));

 A_lo = ((zeta(k)-zeta(k-1))*delta_zeta_mid)^-1;
 A_hi = ((zeta(k+1)-zeta(k))*delta_zeta_mid)^-1;
 A_mid_1 = -1/((zeta(k+1)-zeta(k))*delta_zeta_mid);
 A_mid_2 = -1/((zeta(k)-zeta(k-1))*delta_zeta_mid);
 f(k) = A_lo*phi(k-1)+(A_mid_1+A_mid_2)*phi(k)+A_hi*phi(k+1)+0.5*(exp(-phi(k))...
 -exp(phi(k)));
end

% boundary condition close to the wall. since this is a fixed number, we
% can just specify the value of "phi(0)"

phi_wall = param.wallpotent*param.qe/param.kB/param.T;
delta_zeta_mid = 0.5*(zeta(2)-0);
A_lo = 1/((zeta(1) - 0)*delta_zeta_mid);
A_hi = 1/((zeta(2)-zeta(1))*delta_zeta_mid);
A_mid_1 = -1/((zeta(2)-zeta(1))*delta_zeta_mid);
A_mid_2 = -1/((zeta(1)-0)*delta_zeta_mid);
f(1) = A_lo*phi_wall+(A_mid_1+A_mid_2)*phi(1)+A_hi*phi(2)+0.5*(exp(-phi(1))-
exp(phi(1)));

% boundary condition close at infinity. this is also a fixed number = 0.
% This is significantly different however, since at very far away, the
% derivative also approaches 0. We will try them both.

phi_equil = 0;
delta_zeta_mid = 0.5*(phi_equil+zeta(N-1));
A_lo = 1/((zeta(N-1) - zeta(N))*delta_zeta_mid);
A_hi = 1/((0-zeta(N))*delta_zeta_mid);
A_mid_1 = -1/((0-zeta(N))*delta_zeta_mid);
A_mid_2 = -1/((zeta(N)-zeta(N-1))*delta_zeta_mid);
f(N) = A_lo*phi(N-1)+(A_mid_1+A_mid_2)*phi(N)+A_hi*phi_equil+0.5*(exp(-phi(N))-
exp(phi(N)));
return;

Problem 2: P6B4

This problem is very similar to the problem P6B4, with the exception that we now
change the boundary condition at the wall to one of fixed charge density. The
way charge density is related to the wall potential is by the following equation:

0
00

=

Φ
−=

z
r dz
dεεσ (10)

If we non-dimensionalize we get our boundary condition that states:

0
2

0

0

=

=−=−
ξξ

φ
εε

λσ
d
dK

q
Tk

re

B (11)

So it looks like we just have a fixed Neumann condition, in which we can vary 0σ .

With this in mind we now have to go back to our first equation and find a new
value for 0φ

We look in Beers, page 376 on the treatment of Neumann boundary conditions.
Just to reiterate we use this polynomial interpolation to approximate the
derivative to get better error performance. Assuming that we have a locally
uniform grid (we bypass the tedious algebra associated with the Lagrange
polynomials) and we see that we can use the equation:

()ξ
φφφ

ξ
φ

ξ ∆
−+−

=−=
= 2

43 210
2

0

K
d
d (12)

We can solve for 0φ and arrive at:

()
3

42 222
0

φφξφ −+∆
=
K (13)

We can now plug this into equation (7) and arrive at:

()

()11

2

1

222
1

12

12

2
1

2

3
42

0 φφ

ξ
ξ

φφξφ

ξξ
φφ

ee

K

−+

 −+∆

−
−

−
−

= − (14)

Now everything else remains the same from the code in P6B3. We run it to get
the following plot:

You notice that you get very similar results to problem 6B3.

% benwang_P6B4.m
% Ben Wang
% HW#7 Problem #1
% due 11/7/05 9 am

% This routine will use the finite difference approximation to generate a
% system of nonlinear equations, solving the poisson-boltzmann equation

% ======= main routine benwang_P6B4.m
function iflag_main = benwang_P6B4();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

%PDL> specify parameters
param.qe = 1.602e-19; % [C] charge of electron
param.Nav = 6.022e23; % [] Avogradro's number
param.eps_0 = 8.854e-12; % [C^2/J-m] permittivity of free space
param.eps_r = 78; % [] dielectric constant for water
param.kB = 1.38e-23; % [J/K] Boltzmann's constant
param.T = 298; % [K] room temp
param.totaldebye = 10; % total debye lengths of simulation

%PDL> specify grid parameters

grid.N1 = 50; % number of grid points close to the wall
grid.N2 = 20; % number of grid points far away from wall

%PDL> specify NaCl concentration
num_curves = 6;
conc = logspace(-6,0,num_curves); % [M]
NaCl = conc*1000; % [mol/m^3]

%PDL> wall charge density

sigma_0 = logspace(-2,2,num_curves);
matrix = zeros(grid.N1+grid.N2,num_curves);

%PDL> specify discretization of grid

grid.domain = linspace(0,1,grid.N1+1);
grid.domain = grid.domain(2:end);
a = linspace(1,param.totaldebye, grid.N2+1);
grid.domain = [grid.domain a(2:end)]';

for j = 1:length(sigma_0)
 param.sigma_wall = sigma_0(j);
 guess= ones(grid.N1+grid.N2,1);

 [phi,f] = fsolve(@calc_func_P6B4, guess, [], param, grid);
 matrix(:,j) = phi;
end

% plot curves
funky = ['-','.','-','.','-','.'];
figure;
for m = 1:num_curves
 x = grid.domain;
 y = matrix(:,m);
 semilogy(x,y,funky(m));
 hold on;
end
xlabel('Debye Lengths');
ylabel('Dimensionless charge density at wall');
title('Boundary Condition for Constant Charge Density');

return

%======= subroutine calc_func_P6B4.m
function [f] = calc_func_P6B4(phi,param,grid)

N = length(phi);
f = zeros(N,1);
zeta = grid.domain;
phi;

% first calculate interior points
for k = 2:N-1
 delta_zeta_mid = 0.5*(zeta(k+1)-zeta(k-1));
 A_lo = ((zeta(k)-zeta(k-1))*delta_zeta_mid)^-1;
 A_hi = ((zeta(k+1)-zeta(k))*delta_zeta_mid)^-1;
 A_mid_1 = -1/((zeta(k+1)-zeta(k))*delta_zeta_mid);
 A_mid_2 = -1/((zeta(k)-zeta(k-1))*delta_zeta_mid);

 f(k) = A_lo*phi(k-1)+(A_mid_1+A_mid_2)*phi(k)+A_hi*phi(k+1)+0.5*(exp(-phi(k))...
 -exp(phi(k)));
end

% boundary condition close to the wall. since this is a fixed number, we
% can just specify the value of "phi(0)"

constant = param.sigma_wall*2/3*(zeta(2)-zeta(1));
delta_zeta_mid = 0.5*(zeta(2)-0);
A_lo = 1/((zeta(1) - 0)*delta_zeta_mid);
A_hi = 1/((zeta(2)-zeta(1))*delta_zeta_mid);
A_mid_1 = -1/((zeta(2)-zeta(1))*delta_zeta_mid);
A_mid_2 = -1/((zeta(1)-0)*delta_zeta_mid);

f(1) = A_lo*constant+(A_mid_1+A_mid_2+4/3)*phi(1)+(A_hi-1/3)*phi(2)+0.5*(exp(-phi(1))-
exp(phi(1)));

% boundary condition close at infinity. this is also a fixed number = 0.
% This is significantly different however, since at very far away, the

% derivative also approaches 0. We will try them both.

phi_equil = 0;

delta_zeta_mid = 0.5*(phi_equil+zeta(N-1));
A_lo = 1/((zeta(N-1) - zeta(N))*delta_zeta_mid);
A_hi = 1/((0-zeta(N))*delta_zeta_mid);
A_mid_1 = -1/((0-zeta(N))*delta_zeta_mid);
A_mid_2 = -1/((zeta(N)-zeta(N-1))*delta_zeta_mid);

f(N) = A_lo*phi(N-1)+(A_mid_1+A_mid_2)*phi(N)+A_hi*phi_equil+0.5*(exp(-phi(N))-
exp(phi(N)));

return;

Problem 3: P6C5

This problem involves using finite differences to solve a 2D convection-diffusion-
reaction problem involving three different species. We begin by looking at the
geometry of the problem (with the axis rotated 10 degrees):

Since we have convection in our system, we need to solve for the flow profile.
We first discretize our system, schematically shown in the figure below:

Therefore if we discretize the y-axis into Ny grid points, we should be able to
calculate a local velocity at each grid point in the y-direction. We make a few
assumptions: that there is no convective momentum transfer, that our flow is fully
developed and we neglect entrance and exit effects, as well as edge effects
orthogonal to the z-axis and y-axis. Furthermore we assume that we have
laminar flow and that there is no change in the thickness of the film so that the

z
y

z
y

b

L

only velocity is along the z-axis. Lastly we ignore any potential pressure gradient
such that our flow is purely gravity driven. Thus we have a very simple flow
problem which can be solved analytically.

Velocity

Beginning with Navier-Stokes in 2D, which we can take from Deen p.229, we can
eliminate the terms to have:

() 2

2

cos0
dy
vdg zµθρ += (15)

With BC’s

 No slip: 0)(== byvz

No flux of momentum: 0
0

=
=y

z

dy
dv

This can be solved analytically to yield:

()

−= 2

22

1
2
cos

b
ygbvz µ

θρ (16)

Now we have the velocity which we can plug into our convective diffusion
reaction equations.

Concentration Field

To solve the 2D concentration profile in this flowing film, we can use the same
superimposed grid over this domain, and use finite difference approximations to
make a calculation for each species at each given grid point. We define three 2-
D matrices, one for each species in real space, meaning that these matrices will
contain the concentration information in the geometry of the film. The one
difficulty that arises is that since FSOLVE requires initial guesses and equations
in the form of a vector, we will have to create an indexing method for when we
interchange between real and vector space. We look at Fig 6.2 from Beers:

So here we look at a 2D grid that captures the physical space of the problem. In
this solution we use a similar indexing method; except that we begin with an
index of 1 in the top right corner, move right to left until index = Nz, where Nz is
the number of grid points along the z-axis. We then begin on the subsequent
row at Nz + 1 and then move from right to left until we reach an index of 2Nz.
This continues until we reach the bottom left corner with the index = NyNz, where
Ny is the total number of grid points along the y-axis. But because we physically
have 3 equivalent matrices we need to incorporate an additional difference to our
indexing method. Our total number of indices will be on the order of 3(NzNy).

Thus our final indexing method should be:

() ()() nzNyindex z +−+−= 113 (17)

Where y = 1:Ny, z=1:Nz, and n = 1 for cA, n =2 for cB and n = 3 for cAB. We
label n in the following manner to decrease the bandwidth of the Jacobian,
keeping the matrix sparse and improving computational time. Remember that
every time an additional dimension we do the following (using an example x-
axis): add 3*(x-1)NzNy, for x=1:Nx and that would allow you to incorporate a third
dimension into your index. To add a 4th dimension you add 3*(k-1)*NxNyNz, etc.

Convection Diffusion Equation (with Reaction)

Now that we have a way of getting between real space and vector space, in a
method we call stacking and unstacking a vector, let’s look at the equations we
are trying to solve. To get the conservation equations we turn again to trusty
Deen, this time p. 46. Again we look for a steady state solution, and look at the

z

y

system in 2D. Eliminating irrelevant terms, and filling in for the reaction term
from the problem statement, we arrive at 3 PDEs describing each of our species:

 −−

∂

∂
+

∂
∂

=
∂

∂
K
CCCk

z
C

y
CD

z
Cv AB

BA
AAA

z 2

2

2

2

 (18)

 −−

∂

∂
+

∂
∂

=
∂

∂
K
CCCk

z
C

y
CD

z
Cv AB

BA
BBB

z 2

2

2

2

 (19)

 −+

∂

∂
+

∂
∂

=
∂

∂
K
CCCk

z
C

y
CD

z
Cv AB

BA
ABABAB

z 2

2

2

2

 (20)

We need to solve for their concentrations at each grid point but they are all
coupled due to the reaction term. Furthermore the boundary conditions for each
species are different. However the equations for the internal grid points are
mostly of the same form, so in this region we look solely at species A and the
same equations can be treated similarly for species B and AB.

To numerically solve these coupled ODEs, we use a finite difference
approximation. We imagine that we have a matrix CA that contains that value of
concentration at each discretized grid point. We further have a vector y, of length
Ny, that stores the real-space value of y, a vector z, of length Nz, that stores the
real-space value of z, and a vector vz that stores the real value of velocity at that
some specified value of y.

We begin with the convection term: As discussed in class, we learned that
upwind differencing has an important impact on the numerical stability of our
solution for certain local Peclet numbers. Thus for our convection term, using CA,
as an initial example, we will write:

() ()

−

−
=

∂
∂

−

−

1

1,,

),(

)(
nn

nmAnmA
z

nm

A
z zz

CC
mv

z
C

v (21)

Where m is the index associated with the y-axis and n is the index associated
with the z-axis. Similar equations can be derived fro species B and AB. We also
derive the second derivative diffusion equations for both the z and y axes:

()() ()()

−−

−
−

−−

−
=

∂
∂

−+−

−

−++

+

111

)1,(),(

111

),()1,(

),(
2

2

nnnn

nmAnmA

nnnn

nmAnmA

nm

A

zzzz
CC

zzzz
CC

D
z
CD (22)

()() ()()

−−

−
−

−−

−
=

∂
∂

−+−

−

−++

+

111

),1(),(

111

),(),1(

),(
2

2

mmmm

nmAnmA

mmmm

nmAnmA

nm

A

yyyy
CC

yyyy
CC

D
y
CD (23)

These can also be done for the other species as well. Lastly we incorporate the
reaction term:

−=

K
C

CCkr nmAB
nmBnmAR

),(
),(),((24)

Substituting these representations into the terms in the PDEs, we arrive at
nonlinear algebraic equations in the form of the following

RnmAnmAnmAnmAnmA rCACACACACA −++++= −+−+)1,(5)1,(4),1(3),1(2),(10 (25)

We make some simple assignment calls:

mm

mm

mm

nn

nn

nn

yyhidy
yylody
yymiddy

zzhidz
zzlodz
zzmiddz

−=
−=

−=
−=

−=
−=

+

−

−+

+

−

−+

1

1

11

1

1

11

_
_
_
_
_
_

And now to define some of the A_coefficients:

() () () ()

+−

+−

−
=

lodyhidymiddy
D

lodzhidzmiddz
D

lodz
mvA z

_
1

_
1

__
1

_
1

__
)(

1 (26)

()

=

hidymiddy
DA

_
1

_2 (27)

()

=

lodymiddy
DA

_
1

_3 (28)

()

=

hidzmiddz
DA

_
1

_4 (29)

()

()

+=

lodzmiddz
D

lodz
mvA z

_
1

__5 (30)

These coefficients are easy to calculate if we are passed the value of the indices
m and n, given the vectors z and y and we write a function to take care of this.
Similar equations can be written for the matrices of cB and cAB with the one
difference in cAB, that the reaction term rR is added rather than subtracted.

We need to remember to pass along values of the Jacobian, because this will
significantly reduce the amount of computation time. Luckily the Jacobian is
easy to calculate. Since each equation is dependent on only at most seven
variables, it is fairly straight forward to calculate these values. We go through
and determine the non-zero elements for the equation f(index(m,n)):

()nmB
nmA

index
indexindex kCA

C
fJ ,1

),(
),(−=

∂
∂

= (31)

()nmA
nmB

index
indexindex kC

C
fJ ,

),(
)1,(−=

∂
∂

=+ (32)

K
k

C
fJ

nmAB

index
indexindex

−
=

∂
∂

=+
),(

)2,((33)

4
)1,(

)3,(A
C
fJ

nmA

index
indexindex =

∂
∂

=
+

+ (34)

5
)1,(

)3,(A
C
fJ

nmA

index
indexindex =

∂
∂

=
−

− (35)

2
),1(

)3,(A
C
fJ

nmA

index
zNindexindex =

∂
∂

=
+

+ (36)

3
),1(

)3,(A
C
fJ

nmA

index
zNindexindex =

∂
∂

=
−

− (37)

For species B and AB, there will be slight modifications to equations (32) and
(33), but it remains fairly straightforward. In this manner we can handle all of the
interior boundary points.

Boundary Conditions

Like most PDEs, the boundary conditions dictate what the solution winds up
looking like. In our problem here we have boundary conditions for each species
at each edge of the domain. The problem is further complicated by at the
corners where multiple boundary conditions arise from the joining of boundaries

along both axes. We begin by looking at the edges, neglecting the corners for
now and go into detail into how we handle the boundaries.

Let’s begin by looking at the right edge, where the flow of material enters at
concentrations of cA = 0, cB = 1 M, cAB = 0. This is a Dirichlet boundary
condition for all species and is relatively easy to handle. We simply replace the
value of concentration at the imaginary grid point to the right of our domain, with
the specified concentration. For example:

() RmAmAmAmA rCACAACACAindexf −++++= −+ 1,15)1,1(43)2,(2)1,(1)0()((38)

() RmBmBmBmB rCACAMACACAindexf −++++= −+ 1,15)1,1(43)2,(2)1,(1)1()((39)

The equation for cAB would be something similar to (38). It is relatively easy to
handle Dirichlet conditions. Of course the Jacobian matrix will have to be
modified to reflect this change. In the above examples illustrated in equation (38)
and (39), the terms which are now set to constants have Jacobian values which
are equal to zero there.

Now at the left edge, we specify that there will be no change in the concentration
as a function of z any more. This condition is somewhat klugy because we don’t
know if in fact this is the case, but because we do not know the final
concentrations a priori, we substitute Neumann conditions in as a reasonable
guess. In practice we might invoke Danckwert’s BCs and let the parameters of
the problem dictate the behavior at the edge. We invoke the same treatment of
boundary conditions that we used to arrive at eqn (12). However the use of
Lagrange polynomials gets much more complicated. If we assume that we have
a locally uniform grid spacing, we can still use the same analysis and arrive at a
similar expression:

()

()dz
CCC

dz
dC NzmANzmANzmANzmA

2
43

0)1,(),()1,(, −+ −+−
== (40)

We can rearrange again to get a value for the imaginary grid point to the right of
left of the grid. So the effect of the treatment of the Neumann BC, is to solve for
a value of CA(m,Nz+1) and replace this value, which depends solely on the values of
CA(m,Nz) and cA(m,Nz-1), into the equation for that grid point. This is similarly done for
CB and CAB since they all have Neumann conditions here.

The Jacobians are similarly modified with the exceptions that the term relating to
the imaginary grid point (m,Nz+1), is now set equal to zero, and the Jacobian
terms involving grid points (m,Nz) and (m,Nz-1) now have an additional factor of
4/3(D/dz2) and -1/3(D/dz2), respectively.

Next we examine the top boundary conditions. In class, professor Beers
discussed some of the difficulties in handling this particular boundary condition.
A truly physical problem would either invoke a Neumann condition which
reflected volatilization of species AB and B into the air, or invoke a Dirichlet
condition which would take into account the partial pressure of AB and B in the
atmosphere. We choose to look at the simplified version in which the
concentrations of B and AB are = 0 (thus Dirichlet conditions). However
choosing to use no flux (Neumann conditions) will also be considered correct.

We’ve already seen both of these conditions now. The Dirichlet conditions are
easy to implement, in that for the imaginary grid point above the grid, you replace
the concentration with the constant value specified at the boundary condition.
The No flux condition is similarly implemented and is comparable to what we see
in equation (40). The key thing to remember now is that you have a no-flux
condition in the y direction so the additional factors that are added to grid points
(1,n) and (2,n) are now 4/3(D/dy2) and -1/3(D/dy2), respectively. The bottom
boundary conditions are handled as no-flux conditions (no penetration into the
plate) and can be treated exactly the same as the top condition if you choose to
use the Neumann condition.

So what about the corners? The corners just happen to have boundary
conditions in both axes and you can incorporate them sequentially. The only one
that is a little tricky and you need to remember, is that if you have two Neumann
conditions, you need to remember that there are two contributions to the central
grid point: 4/3(D/dy2) and 4/3(D/dz2). With these in place, you will have specified
all the internal grid points along with all of the edge points.

Code that could handle this might be something like:

% benwang_P6C5.m
% Ben Wang
% HW#7 Problem #3
% due 11/7/05 9 am

% Holy crap. Solving a couple of fluid and transport problem

% ======= main routine benwang_P6C5.m
function iflag_main = benwang_P6C5();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

%PDL> specify parameters
param.pA = 1e-4; % [atm]
param.HA = 1e3; % [M/atm]
param.k = 1e-2; % [L/mol-s]
param.K = 1e3;

param.D = 1e-5/(1e2)^2; % [m^2/s]
param.b = 1e-3; % [m]
param.L = 50e-2; % [m]
param.mu = 1e-3; % [Pa]
param.rho = 1e3; % [kg/m^3]
param.theta = 80/180*pi; % [rad]
param.g = 9.8; % [m/s^2]
param.CB0 = 1; % [M]

%PDL> specify grid parameters

grid.z = 10; % number of grid points along the flow direction
grid.y1 = 20; % number of grid points in the orthogonal to flow
grid.y2 = 11 ;
grid.y = grid.y1 + grid.y2 -1;

grid.dz = param.L/(grid.z+1);

y1 = linspace(0,param.b/30,grid.y1);
y2 = linspace(param.b/30, param.b, grid.y2);

%PDL> initialize 3D matrix, where out of the plane we have the different
%speciesd efine index for 2D grid, here we move from right to left, top to bottom,
% to keep the convention of the diagram

c = zeros(grid.y,grid.z,3);
cA = c(:,:,1);
cB = c(:,:,2);
cAB = c(:,:,3);

%PDL> calculate flow velocity

z = linspace(0, param.L, grid.z);
grid.y_vector = [y1 y2(2:end)];
grid.z_vector = linspace(0,param.L,grid.z);
y = grid.y_vector;
param.vel = calc_vel(grid.y_vector,param);

%PDL> collapse matricex into a single vector

guess = zeros(3*grid.y*grid.z,1);

for i = 1:grid.y
 for j = 1:grid.z
 for k = 1:3
 index = 3*((i-1)*grid.z + (j-1)) + k;
 if k == 2
 guess(index) = param.CB0;
 else
 end
 end
 end
end

%PDL> Call Fsolve
options = optimset('Jacobian','on');
[x, f] = fsolve(@calc_func_P6C5, guess, options, param, grid);

%PDL> extract results

for i = 1:grid.y
 for j = 1:grid.z

 index_cA = 3*(i-1)*grid.z + 3*(j-1) + 1;
 index_cB = 3*(i-1)*grid.z + 3*(j-1) + 2;
 index_cAB = 3*(i-1)*grid.z + 3*(j-1) + 3;

 cA(i,j) = x(index_cA);
 cB(i,j) = x(index_cB);
 cAB(i,j) = x(index_cAB);
 end
end

figure;
pcolor(param.L-z,param.b-grid.y_vector,cA);
shading('interp');
colorbar;
title('Concentration of cA with Dirichlet Condition');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-grid.y_vector,cB);
shading('interp');
colorbar;
title('Concentration of cB with Dirichlet Condition');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-grid.y_vector,cAB);
shading('interp');
colorbar;
title('Concentration of cAB with Dirichlet Condition');
ylabel('y (m)');
xlabel('z (m)');

figure;
semilogy(z,cA(1,:),'s');
hold on;
semilogy(z,cB(1,:),'.');
semilogy(z,cAB(1,:),'-');
title('Concentration at surface Dirichlet Condition');
ylabel('y (m)');
xlabel('z (m)');
legend('cA','cB','cAB');

cAB = cAB(1:20,:);
cA = cA(1:20,:);
cB = cB(1:20,:);

y = grid.y_vector(1:20);

figure;
pcolor(param.L-z,param.b-y,cAB);
shading('interp');
colorbar;
title('Concentration of cAB with Dirichlet Condition (Blown Up)');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-y,cA);
shading('interp');
colorbar;
title('Concentration of cA with Dirichlet Condition (Blown Up)');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-y,cB);
shading('interp');
colorbar;
title('Concentration of cB with Dirichlet Condition (Blown Up)');
ylabel('y (m)');
xlabel('z (m)');

flux = zeros(length(z),1);
cA_int = zeros(length(z),1);

for i = 1:length(z)
 flux(i) = (-3*param.HA*param.pA+4*cA(1,i)-cA(2,i))/(2*(y(2)-y(1)))+...
 (0 + 4*cAB(1,i)-cAB(2,i))/(2*(y(2)-y(1)));
 cA_int(i) = trapz(y,cA(:,i))+trapz(y,cAB(:,i));
end

flux_A_surface = -trapz(z,flux)*param.D/param.L
integral_A_AB = trapz(z,cA_int)/param.L/param.b/100

return;

%======= subroutine calc_volflow.m
function f = calc_vel(y,param)
f = zeros(1, length(y));
constant = param.rho*param.g*cos(param.theta)/param.mu;
f = -constant*y.^2+1e-6*constant;
return
%======= subroutine calc_coeff_P6C5.m
function [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);

y = grid.y_vector;
z = grid.z_vector;
v = param.vel;
D = param.D;

if m==1
 dy_mid = y(2)-y(1);
 dy_lo = dy_mid;
 dy_hi = dy_mid;
elseif m == grid.y
 dy_mid = y(end) - y(end-1);
 dy_lo = dy_mid;
 dy_hi = dy_mid;
else
 dy_mid = (y(m+1)-y(m-1))/2;
 dy_lo = y(m)-y(m-1);
 dy_hi = y(m+1)-y(m);
end

if n==1
 dz_mid = (z(2)-z(1));
 dz_hi = dz_mid;
 dz_lo = dz_mid;
elseif n == grid.z
 dz_mid = z(end)-z(end-1);
 dz_lo = dz_mid;
 dz_hi = dz_mid;
else
 dz_mid = (z(n+1)-z(n-1))/2;
 dz_lo = z(n)-z(n-1);
 dz_hi = z(n+1)-z(n);
end

A1 = -v(m)/dz_lo-D/dz_mid*(dz_hi^-1+dz_lo^-1)-D/dy_mid*(dy_hi^-1+dy_lo^-1);
A2 = D/dy_mid/dy_hi;
A3 = D/dy_mid/dy_lo;
A4 = D/dz_mid/dz_hi;
A5 = v(m)/dz_lo + D/dz_mid/dz_lo;

if k==3
 rR = param.k;
else
 rR = -param.k;
end

return
%======= subroutine calc_bc_coeff.m
function [BC1, BC2, BC3, BC4, BC5] = calc_bc_coeff(m,n,k,param,grid);

[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);

y = grid.y_vector;
z = grid.z_vector;
v = param.vel;

BC1 = 0;
BC2 = 0;
BC3 = 0;
BC4 = 0;
BC5 = 0;

y_BC = A2;
z_BC = A4;

% right boundary condtion (Dirichlet)

if n == 1
 if k == 1
 BC5 = 0;
 elseif k == 2
 BC5 = param.CB0*A5;
 elseif k == 3
 BC5 = 0;
 end
end

% left boundary condition (Neumann)

if n == grid.z
 BC1 = BC1 + 4/3*z_BC;
 BC4 = 0;
 BC5 = BC5 - 1/3*z_BC;
end

% upper boundary condition (Dirichlet)

if m == 1
 if k == 1
 BC3 = param.HA*param.pA*y_BC;
 elseif k == 2
 BC3 = 0;
 elseif k == 3
 BC3 = 0;
 end
end

% lower boundary condition (Neumann)

if m == grid.y
 BC1 = BC1 + 4/3*y_BC;
 BC2 = 0;
 BC3 = BC3 - 1/3*y_BC;
end

return

%======= subroutine get_Jac_indices.m

function [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid);

index = 3*((m-1)*grid.z + (n-1)) + k;
p = index;
if k == 1
 p2 = index+1;
 p3 = index+2;
elseif k==2
 p2 = index-1;
 p3 = index+1;
else
 p2 = index-2;
 p3 = index-1;
end

p4 = index+3*grid.z;
p5 = index-3*grid.z;
p6 = index+3;
p7 = index-3;

return

%======= subroutine calc_func_P6C5.m
function [f, Jac] = calc_func_P6C5(x0, param, grid)
%function [f] = calc_func_P6C5(x0, param, grid)
f = zeros(length(x0),1);
v = param.vel;
% extract vector into more physical format

c = zeros(grid.y,grid.z,3);

Jac = spalloc(length(x0),length(x0),7*length(x0));

for m = 1:grid.y
 for n = 1:grid.z
 for k = 1:3
 index_c = 3*((m-1)*grid.z + (n-1)) + k;
 c(m,n,k) = x0(index_c);
 end
 end
end

for m = 1:grid.y
 for n = 1:grid.z
 for k = 1:3

 [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);
 [BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid);

 % get function index
 index_c = 3*((m-1)*grid.z + (n-1)) + k;
 % top condition
 if m == 1
 % upper right condition (2 Dirichlet)

 if n == 1
 f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + BC3 + A4*c(m,n+1,k) + ...
 BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 % upper left condition (1 Dirichlet and 1 Neumann)
 elseif n == grid.z
 f(index_c) = (A1+BC1)*c(m,n,k) + A2*c(m+1,n,k) + BC3 + ...
 (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 else
 % purely top condition (Dirichlet)
 f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + BC3 + A4*c(m,n+1,k) + ...
 A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 end
 % bottom boundary condition
 elseif m == grid.y
 if n == 1
 % lower right condition (1 Dirichlet and 1 Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ...
 BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 elseif n == grid.z
 % lower left condition (2 Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + (A5+BC5)*c(m,n-
1,k) + ...
 rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 else
 % bottom condition (1 Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ...
 A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 end
 else
 % right boundary (Dirichlet)
 if n == 1
 f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ...
 A4*c(m,n+1,k) + BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 %left boundary (Neumann)
 elseif n == grid.z
 f(index_c) = (A1+BC1)*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ...
 (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 else
 %interior grid points
 f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) +...
 A4*c(m,n+1,k) + A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 end
 end
 end
 end
end

for m = 1:grid.y
 for n = 1:grid.z
 for k = 1:3
 [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid);

 index_c = 3*((m-1)*grid.z + (n-1)) + k;
 [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c);
 if (index_c <= 3*grid.z) | (index_c >= length(x0)-3*grid.z)

 if (index_c <= 3*grid.z)
 if (index_c <= 3)
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p4) = c4;
 Jac(p,p6) = c6;
 else
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p4) = c4;
 Jac(p,p6) = c6;
 Jac(p,p7) = c7;
 end
 elseif (index_c >= length(x0)-3*grid.z)
 if (index_c >= length(x0) - 3)
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p5) = c5;
 Jac(p,p7) = c7;
 else
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p5) = c5;
 Jac(p,p6) = c6;
 Jac(p,p7) = c7;
 end
 end
 else
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p4) = c4;
 Jac(p,p5) = c5;
 Jac(p,p6) = c6;
 Jac(p,p7) = c7;
 end
 end
 end
end

spy(Jac)
return

% ====== subroutine get_jac_const.m

function [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c)

[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);
[BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid);

if k == 1

 c1 = A1 + rR*c(m,n,2);
 c2 = rR*c(m,n,1);
 c3 = -rR/param.K;
elseif k == 2
 c1 = A1 + rR*c(m,n,1);
 c2 = rR*c(m,n,2);
 c3 = -rR/param.K;
elseif k == 3
 c1 = A1 - rR/param.K;
 c2 = rR*c(m,n,2);
 c3 = rR*c(m,n,1);
end

if m == 1
 if n == 1
 c4 = A2;
 c5 = 0;
 c6 = A4;
 c7 = 0;
 elseif n == grid.z
 c1 = c1 + BC1;
 c4 = A2;
 c5 = 0;
 c6 = 0;
 c7 = A5 + BC5;
 else
 c4 = A2;
 c5 = 0;
 c6 = A4;
 c7 = A5;
 end
elseif m == grid.y
 if n == 1
 c1 = c1 + BC1;
 c4 = 0;
 c5 = A3 + BC3;
 c6 = A4;
 c7 = 0;
 elseif n == grid.z
 c1 = c1 + BC1;
 c4 = 0;
 c5 = A3 + BC3;
 c6 = 0;
 c7 = A5 + BC5;
 else
 c1 = c1 + BC1;
 c4 = 0;
 c5 = A3 + BC3;
 c6 = A4;
 c7 = A5;
 end
else
 if n == 1
 c4 = A2;
 c5 = A3;
 c6 = A4;

 c7 = 0;
 elseif n == grid.z
 c1 = c1 + BC1;
 c4 = A2;
 c5 = A3;
 c6 = 0;
 c7 = A5 + BC5;
 else
 c4 = A2;
 c5 = A3;
 c6 = A4;
 c7 = A5;
 end
end

return

The steady state concentration profiles for each species might look like (note
despite the numerical values, the origin of these charts are in the upper right with
flow traveling from right to left):

We notice immediately, that most of the action occurs very close to the surface,
which makes sense, since we have a pretty fast velocity with relatively slow
diffusion. Because of this, we take advantage of uneven grid spacing to run our
simulation, with a finer mesh close to the surface. We note that if the values at
the surface continue to change as we increase the mesh then the grid spacing is
not tight enough. If you pass FSOLVE either the sparsity pattern of the
Jacobian, or the Jacobian, itself you could run a pretty accurate simulation in a
reasonable time. If you would be able to do this and look at the simulation only
close to the surface, you might get graphs such as these (blown up near the
region of interest)

Remember that the origin is on the upper right corner.

Absorption Rate

We are also asked for the average absorption rate per unit area. Since the goal
of the problem was to increase the amount of absorption of A from the gas
stream, by the addition of a reactive falling film, we’d like to determine how much
extra A gets into the stream. We can do this in one of two ways. We can
calculate the ‘flux’ of A at the interface of liquid and gas. We can also integrate
the total amount of A in the film, and normalize it to some unit length.

Let’s look at the flux of A at the interface. We again use the equation from page
376. We now plug in certain values and integrate over the length of the film:

()

()12

),2(),1(),0(,1

2
43

yy
CCC

dy
dC nAnAnAnA

−
−+−

= (41)

()dz
dy

dC
D

L
fluxmean L nA

∫
−

= 0
,11_ (42)

If we do a full integration of all the A in the film, we just do a 2-D integration
across y and z of all cA and cAB.

()∫ ∫ += L b
ABA dydzCC

bL
Amean 0 0

1_ (43)

We accomplish these integrations using trapz. We are asked to calculate these
mean absorption rates and we note that we get the following values:

flux_A_surface =

 5.7474e-006

integral_A_AB =

 1.1339e-005

We compare this with the rate constant k, set to 0.

flux_A_surface =

 5.7474e-006

integral_A_AB =

 1.1339e-005

When look at the two, we see no improvement. This makes sense because we
have effectively locked in all the material by specifying no flux at the right and
bottom of A, as well as a specified concentration at top. Therefore, the reaction
term serves to only change species A AB.

By changing the top boundary condition to a no-flux condition, we can get an
improvement in absorption. To get to this boundary condition, it is just to apply
our standard 4/3 – 1/3 treatment as per before (the code is very similar, but is
included at the end for your perusal if you wish). For further consideration of the
Neumann condition, you might get numbers on the order of these (note that the
number here were calculated for different grid spacings, which result in different
absolute numbers).

Neumann boundary conditions (no flux at surface for AB, B):

flux_A_surface =

 5.7495e-006

integral_A_AB =

 1.1349e-005

We compare this with the rate constant k, set to 0.

flux_A_surface =

 5.7474e-006

integral_A_AB =

 1.1339e-005

So it is acceptable for the Dirichlet boundary condition to see no relative increase
in extraction… this is because much of that AB (and B, for that matter) has
evaporated off into the air. We’d need to model that as well in order to get a fuller
picture of what has happened. As Dr. Beers pointed out in class, a way to
inelegantly force things to look like we’d like is to apply the Neumann condition
for AB and B… in this case, we see an increase in extractive potential. We note
that it is small, though this may be expected because the reaction is relatively
slow (less than 0.1 M/s) and the fluid is flowing fast (0.8 m/s) over a short span
(0.5 m). If you were to crank up the value of the reaction constant k, you’d see a
significant improvement of extraction for the reactive extraction. And here are
plots and code… first for Dirichlet boundary conditions, then for von Neumann
boundary conditions.

Note that different rate constants and top boundary conditions do not actually
change the graphs all that much, at least visually. So the graphs should be
about the same if you chose either boundary condition, so the others are not
included here. You can compare against part 2 of this solution, also attached
provided on MIT server.

% benwang_P6C5.m
% Ben Wang
% HW#7 Problem #3
% due 11/7/05 9 am

% Holy crap. Solving a couple of fluid and transport problem

% ======= main routine benwang_P6C5.m
function iflag_main = benwang_P6C5();

iflag_main = 0;

%PDL> clear graphs, screen etc. general initialization
clear all; close all; clc;

%PDL> specify parameters
param.pA = 1e-4; % [atm]
param.HA = 1e3; % [M/atm]
param.k = 1e-2; % [L/mol-s]

param.K = 1e3;
param.D = 1e-5/(1e2)^2; % [m^2/s]
param.b = 1e-3; % [m]
param.L = 50e-2; % [m]
param.mu = 1e-3; % [Pa]
param.rho = 1e3; % [kg/m^3]
param.theta = 80/180*pi; % [rad]
param.g = 9.8; % [m/s^2]
param.CB0 = 1; % [M]

%PDL> specify grid parameters

grid.z = 10; % number of grid points along the flow direction
grid.y1 = 20; % number of grid points in the orthogonal to flow
grid.y2 = 11 ;
grid.y = grid.y1 + grid.y2 -1;

grid.dz = param.L/(grid.z+1);

y1 = linspace(0,param.b/30,grid.y1);
y2 = linspace(param.b/30, param.b, grid.y2);

%PDL> initialize 3D matrix, where out of the plane we have the different
%speciesd efine index for 2D grid, here we move from right to left, top to bottom,
% to keep the convention of the diagram

c = zeros(grid.y,grid.z,3);
cA = c(:,:,1);
cB = c(:,:,2);
cAB = c(:,:,3);

%PDL> calculate flow velocity

z = linspace(0, param.L, grid.z);
grid.y_vector = [y1 y2(2:end)];
grid.z_vector = linspace(0,param.L,grid.z);
y = grid.y_vector;
param.vel = calc_vel(grid.y_vector,param);

%PDL> collapse matricex into a single vector

guess = zeros(3*grid.y*grid.z,1);

for i = 1:grid.y
 for j = 1:grid.z
 for k = 1:3
 index = 3*((i-1)*grid.z + (j-1)) + k;
 if k == 2
 guess(index) = param.CB0;
 else
 end
 end
 end
end

%PDL> Call Fsolve
options = optimset('Jacobian','on');
[x, f] = fsolve(@calc_func_P6C5, guess, options, param, grid);

%PDL> extract results

for i = 1:grid.y
 for j = 1:grid.z

 index_cA = 3*(i-1)*grid.z + 3*(j-1) + 1;
 index_cB = 3*(i-1)*grid.z + 3*(j-1) + 2;
 index_cAB = 3*(i-1)*grid.z + 3*(j-1) + 3;

 cA(i,j) = x(index_cA);
 cB(i,j) = x(index_cB);
 cAB(i,j) = x(index_cAB);
 end
end

figure;
pcolor(param.L-z,param.b-grid.y_vector,cA);
shading('interp');
colorbar;
title('Concentration of cA with Neumann Condition');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-grid.y_vector,cB);
shading('interp');
colorbar;
title('Concentration of cB with Neumann Condition');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-grid.y_vector,cAB);
shading('interp');
colorbar;
title('Concentration of cAB with Neumann Condition');
ylabel('y (m)');
xlabel('z (m)');

figure;
semilogy(z,cA(1,:),'s');
hold on;
semilogy(z,cB(1,:),'.');
semilogy(z,cAB(1,:),'-');
title('Concentration at surface Neumann Condition');
ylabel('y (m)');
xlabel('z (m)');
legend('cA','cB','cAB');

cAB = cAB(1:20,:);
cA = cA(1:20,:);
cB = cB(1:20,:);

y = grid.y_vector(1:20);

figure;
pcolor(param.L-z,param.b-y,cAB);
shading('interp');
colorbar;
title('Concentration of cAB with Neumann Condition (Blown Up)');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-y,cA);
shading('interp');
colorbar;
title('Concentration of cA with Neumann Condition (Blown Up)');
ylabel('y (m)');
xlabel('z (m)');

figure;
pcolor(param.L-z,param.b-y,cB);
shading('interp');
colorbar;
title('Concentration of cB with Neumann Condition (Blown Up)');
ylabel('y (m)');
xlabel('z (m)');

flux = zeros(length(z),1);
cA_int = zeros(length(z),1);

for i = 1:length(z)
 flux(i) = (-3*param.HA*param.pA+4*cA(1,i)-cA(2,i))/(2*(y(2)-y(1)))+...
 (4*cAB(1,i)-cA*2,i)/(2*(y(2)-y(1)));
 cA_int(i) = trapz(y,cA(:,i))+trapz(y,cAB(:,i));
end

flux_A_surface = -trapz(z,flux)*param.D/param.L
integral_A_AB = trapz(z,cA_int)/param.L/param.b/100

return;

%======= subroutine calc_volflow.m
function f = calc_vel(y,param)
f = zeros(1, length(y));
constant = param.rho*param.g*cos(param.theta)/param.mu;
f = -constant*y.^2+1e-6*constant;
return
%======= subroutine calc_coeff_P6C5.m
function [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);

y = grid.y_vector;

z = grid.z_vector;
v = param.vel;
D = param.D;

if m==1
 dy_mid = y(2)-y(1);
 dy_lo = dy_mid;
 dy_hi = dy_mid;
elseif m == grid.y
 dy_mid = y(end) - y(end-1);
 dy_lo = dy_mid;
 dy_hi = dy_mid;
else
 dy_mid = (y(m+1)-y(m-1))/2;
 dy_lo = y(m)-y(m-1);
 dy_hi = y(m+1)-y(m);
end

if n==1
 dz_mid = (z(2)-z(1));
 dz_hi = dz_mid;
 dz_lo = dz_mid;
elseif n == grid.z
 dz_mid = z(end)-z(end-1);
 dz_lo = dz_mid;
 dz_hi = dz_mid;
else
 dz_mid = (z(n+1)-z(n-1))/2;
 dz_lo = z(n)-z(n-1);
 dz_hi = z(n+1)-z(n);
end

A1 = -v(m)/dz_lo-D/dz_mid*(dz_hi^-1+dz_lo^-1)-D/dy_mid*(dy_hi^-1+dy_lo^-1);
A2 = D/dy_mid/dy_hi;
A3 = D/dy_mid/dy_lo;
A4 = D/dz_mid/dz_hi;
A5 = v(m)/dz_lo + D/dz_mid/dz_lo;

if k==3
 rR = param.k;
else
 rR = -param.k;
end

return
%======= subroutine calc_bc_coeff.m
function [BC1, BC2, BC3, BC4, BC5] = calc_bc_coeff(m,n,k,param,grid);

[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);

y = grid.y_vector;
z = grid.z_vector;
v = param.vel;

BC1 = 0;
BC2 = 0;
BC3 = 0;
BC4 = 0;
BC5 = 0;

y_BC = A2;
z_BC = A4;

% right boundary condtion (Dirichlet)

if n == 1
 if k == 1
 BC5 = 0;
 elseif k == 2
 BC5 = param.CB0*A5;
 elseif k == 3
 BC5 = 0;
 end
end

% left boundary condition (Neumann)

if n == grid.z
 BC1 = BC1 + 4/3*z_BC;
 BC4 = 0;
 BC5 = BC5 - 1/3*z_BC;
end

% upper boundary condition (Neumann)

if m == 1
 if k == 1
 BC3 = param.HA*param.pA*y_BC;
 elseif k == 2
 BC1 = BC1 + 4/3*z_BC;
 BC2 = BC2 - 1/3*z_BC;
 elseif k == 3
 BC1 = BC1 + 4/3*z_BC;
 BC2 = BC2 - 1/3*z_BC;
 end
end

% lower boundary condition (Neumann)

if m == grid.y
 BC1 = BC1 + 4/3*y_BC;
 BC2 = 0;
 BC3 = BC3 - 1/3*y_BC;
end

return

%======= subroutine get_Jac_indices.m

function [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid);

index = 3*((m-1)*grid.z + (n-1)) + k;
p = index;
if k == 1
 p2 = index+1;
 p3 = index+2;
elseif k==2
 p2 = index-1;
 p3 = index+1;
else
 p2 = index-2;
 p3 = index-1;
end

p4 = index+3*grid.z;
p5 = index-3*grid.z;
p6 = index+3;
p7 = index-3;

return

%======= subroutine calc_func_P6C5.m
function [f, Jac] = calc_func_P6C5(x0, param, grid)
%function [f] = calc_func_P6C5(x0, param, grid)
f = zeros(length(x0),1);
v = param.vel;
% extract vector into more physical format

c = zeros(grid.y,grid.z,3);

Jac = spalloc(length(x0),length(x0),7*length(x0));

for m = 1:grid.y
 for n = 1:grid.z
 for k = 1:3
 index_c = 3*((m-1)*grid.z + (n-1)) + k;
 c(m,n,k) = x0(index_c);
 end
 end
end

for m = 1:grid.y
 for n = 1:grid.z
 for k = 1:3

 [A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);
 [BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid);

 % get function index
 index_c = 3*((m-1)*grid.z + (n-1)) + k;
 % top condition
 if m == 1
 % upper right condition (1 Dirichlet 1 Neumann)

 if n == 1
 f(index_c) = (A1+BC1)*c(m,n,k) + (A2+BC2)*c(m+1,n,k) + BC3 +
A4*c(m,n+1,k) + ...
 BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 % upper left condition (2 Neumann)
 elseif n == grid.z
 f(index_c) = (A1+BC1)*c(m,n,k) + (A2+BC2)*c(m+1,n,k) + BC3 + ...
 (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 else
 % purely top condition (Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A2+BC2)*c(m+1,n,k) + BC3 +
A4*c(m,n+1,k) + ...
 A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 end
 % bottom boundary condition
 elseif m == grid.y
 if n == 1
 % lower right condition (1 Dirichlet and 1 Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ...
 BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 elseif n == grid.z
 % lower left condition (2 Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + (A5+BC5)*c(m,n-
1,k) + ...
 rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 else
 % bottom condition (1 Neumann)
 f(index_c) = (A1+BC1)*c(m,n,k) + (A3+BC3)*c(m-1,n,k) + A4*c(m,n+1,k) + ...
 A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 end
 else
 % right boundary (Dirichlet)
 if n == 1
 f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ...
 A4*c(m,n+1,k) + BC5 + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 %left boundary (Neumann)
 elseif n == grid.z
 f(index_c) = (A1+BC1)*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) + ...
 (A5+BC5)*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 else
 %interior grid points
 f(index_c) = A1*c(m,n,k) + A2*c(m+1,n,k) + A3*c(m-1,n,k) +...
 A4*c(m,n+1,k) + A5*c(m,n-1,k) + rR*(c(m,n,1)*c(m,n,2)-c(m,n,3)/param.K);
 end
 end
 end
 end
end

for m = 1:grid.y
 for n = 1:grid.z
 for k = 1:3
 [p,p2,p3,p4,p5,p6,p7] = get_Jac_indices(m,n,k,grid);

 index_c = 3*((m-1)*grid.z + (n-1)) + k;

 [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c);
 if (index_c <= 3*grid.z) | (index_c >= length(x0)-3*grid.z)
 if (index_c <= 3*grid.z)
 if (index_c <= 3)
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p4) = c4;
 Jac(p,p6) = c6;
 else
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p4) = c4;
 Jac(p,p6) = c6;
 Jac(p,p7) = c7;
 end
 elseif (index_c >= length(x0)-3*grid.z)
 if (index_c >= length(x0) - 3)
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p5) = c5;
 Jac(p,p7) = c7;
 else
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p5) = c5;
 Jac(p,p6) = c6;
 Jac(p,p7) = c7;
 end
 end
 else
 Jac(p,p) = c1;
 Jac(p,p2) = c2;
 Jac(p,p3) = c3;
 Jac(p,p4) = c4;
 Jac(p,p5) = c5;
 Jac(p,p6) = c6;
 Jac(p,p7) = c7;
 end
 end
 end
end

spy(Jac)
return

% ====== subroutine get_jac_const.m

function [c1,c2,c3,c4,c5,c6,c7] = get_jac_const(m,n,k,param,grid,c)

[A1,A2,A3,A4,A5,rR] = calc_coeff_P6C5(m,n,k,param,grid);
[BC1,BC2,BC3,BC4,BC5] = calc_bc_coeff(m,n,k,param,grid);

if k == 1
 c1 = A1 + rR*c(m,n,2);
 c2 = rR*c(m,n,1);
 c3 = -rR/param.K;
elseif k == 2
 c1 = A1 + rR*c(m,n,1);
 c2 = rR*c(m,n,2);
 c3 = -rR/param.K;
elseif k == 3
 c1 = A1 - rR/param.K;
 c2 = rR*c(m,n,2);
 c3 = rR*c(m,n,1);
end

if m == 1
 if n == 1
 c1 = c1 + BC1;
 c4 = A2 + BC2;
 c5 = 0;
 c6 = A4;
 c7 = 0;
 elseif n == grid.z
 c1 = c1 + BC1;
 c4 = A2 + BC2;
 c5 = 0;
 c6 = 0;
 c7 = A5 + BC5;
 else
 c4 = A2 + BC2;
 c5 = 0;
 c6 = A4;
 c7 = A5;
 end
elseif m == grid.y
 if n == 1
 c1 = c1 + BC1;
 c4 = 0;
 c5 = A3 + BC3;
 c6 = A4;
 c7 = 0;
 elseif n == grid.z
 c1 = c1 + BC1;
 c4 = 0;
 c5 = A3 + BC3;
 c6 = 0;
 c7 = A5 + BC5;
 else
 c1 = c1 + BC1;
 c4 = 0;
 c5 = A3 + BC3;
 c6 = A4;
 c7 = A5;
 end
else

 if n == 1
 c4 = A2;
 c5 = A3;
 c6 = A4;
 c7 = 0;
 elseif n == grid.z
 c1 = c1 + BC1;
 c4 = A2;
 c5 = A3;
 c6 = 0;
 c7 = A5 + BC5;
 else
 c4 = A2;
 c5 = A3;
 c6 = A4;
 c7 = A5;
 end
end

return

