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1.(1 point)  3.A.1 From Gershorgin’s theorem, derive lower and upper bounds on the 

possible eigenvalues of the matrix 
1 0 3
0 2 1
3 1 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
The first thing we note is that A is symmetric; that is, AT = A.  That means that A is also 
Hermetian, because AH = AT if all values in A are real.  We know that a Hermetian matrix 
has all real eigenvalues. 
 
From Gershorgin’s theorem, we know that the eigenvalues will be located somewhere 
“near” the main diagonal elements: 
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If complex eigenvalues were possible, this would denote a circle around the diagonal 
elements.  Since we know that the eigenvalues are purely real, that means that they can 
only be in intervals surrounding each diagonal element, where the half-width of the 
interval around some diagonal element is equal to the sum of off-diagonal elements in 
that row.  So we look at the three rows in turn to define: 
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So that means that the eigenvalues lie in the bounds 
[ ] [ ] [ ]2, 4 , 1,3 , 5,3− −  
So, you can say that all eigenvalues must fall between the lower bound of -2 and the 
upper bound of 4, the lower bound of 1 and the upper bound of 3, or the lower bound of   
-5 and the upper bound of 3.  However, that statement seems somewhat odd due to the 
significant overlap of the intervals. 
We can instead note that the union of these intervals is actually one interval, defined as 
[ ]5, 4−  
So, all eigenvalues for A must fall in the above interval, making -5 the lower bound and 4 
the upper bound. 
 
Grading: 
(-0.5 point): no discussion of the matrix being symmetric 
(-0.25 point): missing total range of eigenvalues 
(-0.25 point): mention of why the eigenvalues must be real 



 
2. (3 points) 3.A.2 Compute by hand the eigenvalues and eigenvectors of (3.269), and 
check your results using Matlab. 
 
The eigenvalues are defined as the solutions of  

[ ] [ ]k k
kAw wλ= , 

which can be restated as  
( ) [ ] 0k

kA I wλ− =  or  ( )det 0kA Iλ− =

So we set up the matrix ( )kA Iλ− , which is 
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We take this determinant and find that 
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(I have already canceled zero terms for simplicity.)  This reduces to 
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We note that there is no immediately obvious solution, and trying the integer values in 
our interval gives us nothing, so we go back to the good old TI-85 or Matlab or 
Mathematica or whatever else you prefer, and we find that the roots are 

1 2 33.4211, 3.2880, 1.8669λ λ λ= = − =  
We can then use these eigenvalues to find the eigenvectors.  We go back to one of our 
initial equations, that  
( ) [ ] 0k

kA I wλ− =  
So we plug in each eigenvalue λk and solve for the eigenvector w[k].  We’ll set up our 
augmented matrix as such: 
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Since we’re solving for the null space, and we know there are no repeated eigenvalues, 
we can just say that two of these equations are linearly independent.  You can solve for 
this null space any way you like; I’ll do the way I know. 
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I move the “free variable” over to the right side of the equation and define it as a 
constant, s.  Note that you could just define it as 1… but if you were finding a null space 



with dimension two, it would not be a good idea to define two variables as two numerical 
constants… you would lose track of which entry contained which “constant” and your 
eigenvectors would be hosed.  So, I’m sticking with s. 
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So we can say that 
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This means that for each valid eigenvalue, we will get a distinct eigenvector.  Plugging in 
our valid eigenvalues, we get  
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1.2391 0.6996 3.4607
0.7037 , 0.1891 , 7.5131
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Wonderful.  These can also be normalized by dividing by their magnitudes to yield 
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Normalizing is particularly useful because Matlab will return its eigenvectors in unit 
magnitude.  Note that multiplying any of the eigenvectors by a constant still gives an 
eigenvector, meaning that our normalization is OK and it’s OK if an entire vector is off 
by a factor of -1.  Matlab tells us: 
 
eigenvectors = 
 
   -0.5665   -0.4153   -0.7118 
   -0.1531    0.9018   -0.4042 
    0.8097   -0.1200   -0.5744 
 
 
eigenvalues = 
 



   -3.2880         0         0 
         0    1.8669         0 
         0         0    3.4211 
 
Great. 
 
Grading: 
(up to -1 point): Clear writeup linking equations and concepts 
(-1 point): No eigenvectors calculated by hand 
(-1 point): No eigenvectors calculated by Matlab 
(-0.5 point): No eigenvalues calculated by hand 
(-0.5 point): No eigenvalues calculated by Matlab 
(-1 point): Didn’t compare to or properly reconcile hand-calculated results with those of 
Matlab 
 
3. (3 points) 3.A.3 Consider the following matrices, 

0 1 2 1
6 2 1 0 1 0

1 2 0 4 3 2
, 0 5 1 , , 1 0 0

2 0 3 0 1 1
1 3 2 0 0 1

1 4 0 1

A B C D

− −⎡ ⎤
−⎡ ⎤ ⎡ ⎤⎢ ⎥− ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = − = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦ ⎣ ⎦−⎣ ⎦

 

 
(a) Without computing the actual eigenvalues, can you tell if any of the matrices above 
must have all real eigenvalues?  Explain why you make this judgment. 
 
All of the matrices are real, which is convenient.  That means that if a matrix is 
symmetric, it is guaranteed to have all real eigenvalues; otherwise, we can make no 
guarantees.  Clearly, only matrix A is symmetric, so matrix A has all real eigenvalues. 
 
(b) For each of those guaranteed to have all real eigenvalues, provide an upper and 
lower bounds on the eigenvalues. 
 
We can use Gershorgin’s theorem to determine an upper and lower bounds on the 
eigenvalues for A.  Using the same reasoning as in the first problem, namely that 
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we can say that the bounds for the eigenvalues are: 
[ ] [ ] [ ] [ ]4, 4 , 3,7 , 1,5 , 6, 4− − −  
Since these bounds have significant overlap, we can condense them to say that all 
eigenvalues will fall in the range 
[ ]6,7−  
 
(c) Show that D is unitary. 
 



A unitary matrix meets the requirement that DH = D-1.  Since this is a strictly real matrix, 
this is the same as saying DT = D-1.  So, when we multiply out DDT, it should be the same 
as DD-1, which should yield the identity matrix.  Actually doing the multiplication, we 
see that 

0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1
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So D is indeed unitary. 
 
(d) Compute by hand the eigenvalues and unit-length eigenvectors of C. 
 
OK, we use the equations from the second problem again, namely 

( )det 0kA Iλ− =  
So, that means 
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The solution for this characteristic equation can be found using the quadratic formula, 
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Again, we know that there will be one independent equation for each eigenvalue.  So we 
say 
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And Matlab agrees with these latter normalized eigenvectors. 
 
Grading: 
Part a: 0.5 point 



Part b: 0.5 point 
Part c: 0.5 point 
Part d: 0.5 point for eigenvalues, 0.5 point for eigenvectors, 0.5 point for normalization 
 
4.(3 points)  3.B.2 Consider the positive-definite matrix A, obtained by discretizing the 
Poisson equation 2 fϕ =−∇ in d dimensions on a hypercube grid of Nd points, with the 
following non-zero elements in each row for 1jxΔ = , 

2kkA d=    
,

1mk k N
A

±
= − 0,1, , 1m d= −…  

Plot as functions of N the largest and smallest eigenvalues and the condition number for 
d = 1,2,3.  For d = 3, extend the calculation to relatively large values of N by not storing 
the matrix (even in sparse format) but rather by merely supplying a routine that returns 
Av given an input value of v. 
 
The actual derivation of the matrix is not asked for; I’ll only give a brief discussion of it 
here.  We have seen the one-dimensional finite difference method, and hopefully it makes 
sense to you.  The same thing can be done for multiple dimensions by making a grid of 
higher dimensions.  In this case, the value of each grid point is dependent not only upon 
its neighbors in the x direction, but also on the neighbors in the y direction and/or the z 
direction (depending on the dimensionality of the approximation).  So you’ll have Nd grid 
points in total… N in each direction.  This means you have Nd unknowns, but also Nd 
equations.  That means that you can form an Nd x Nd matrix to represent all of our 
equations and unknowns, no matter what the value of d is.   
 
Now, once you have all of these points that are being represented in one matrix, you need 
a way to keep track of where they came from… for instance, what grid point does the 
105th column in the finite difference matrix represent?  You can do this by keeping track 
of the grid points in an orderly fashion.  This is where the equations that the problem 
gives come in.  There is one way of representing these grid points where the relevant off-
diagonal elements are defined by  for row k. mk N±
 
In addition, the Poisson equation as given to you is equivalent to (assuming Cartesian 
coordinates): 

2

2
dim dimall

fϕ∂
=

∂∑  

Where the values of dim may be x, y, z, etc. 
 
But you don’t need to know that to solve this problem.  All you need to do is get that 
matrix into Matlab in sparse form and calculate the eigenvectors, eigenvalues, and 
condition numbers for varying N and d.  For d = 1,2, this is extremely simple and is 
shown below.  For d = 3, the problem asks you to not store the matrix, but rather to be 
able to calculate Av given some v.  This is useful because Matlab (via eigs()) can use this 
function to iteratively determine the eigenvalues you are looking for via the power 
method described in class and in the text starting on page 181.  That function is included 
after the main program. 
 



The only real equation of relevance for this problem is the condition number: 
max

min

λ
κ

λ
=  

 
Given that, the program is relatively straight-forward.  Note the advice that was given in 
an email to the class: try to use the sigma value of ‘BE’ when calling eigs(), and make 
sure you accept both the eigenvectors and eigenvalues for that call, otherwise you will get 
incorrect answers. 
 
% Mark Styczynski 
% 10.34 
% Homework 4 
% Problem 4, P 3.B.2 
  
clear all; close all; 
  
% First we set up some options that we'll pass to eigs so that it 
%  knows just how simple of a matrix we are giving it.  This will 
%  significantly help convergence. 
opts.disp = 0; 
opts.issym = 1; 
  
% PDL> Set up values that N can take. 
Nvec = [linspace(2,40,39) 50 60 70 80 90 100]; 
  
% PDL> Solve for d = 1, storing the matrix and then calculating 
%  the eigenvalues using eigs() 
for i=1:length(Nvec), 
    N = Nvec(i) 
    delPhi = spalloc(N,N,3*N); 
    for k=1:N, 
        if (k>1) 
            delPhi(k,k-1) = -1; 
        end 
        delPhi(k,k) = 2; 
        if (k<N) 
            delPhi(k,k+1) = -1; 
        end 
    end 
     
    % PDL> Store the data that we get at each stop for plotting later. 
    [useless, eigMat] = eigs(delPhi,2,'BE',opts); 
    dim1Small(i) = eigMat(1,1); 
    dim1Large(i) = eigMat(2,2); 
    dim1CondNum(i) = dim1Large(i)/dim1Small(i); 
    % We keep the even ones because we like the prettier picture 
    %  we get when we plot them. 
    if mod(i,2) == 0 
        dim1SmallEven(i/2) = eigMat(1,1); 
        dim1LargeEven(i/2) = eigMat(2,2); 
        dim1CondNumEven(i/2) = eigMat(2,2)/eigMat(1,1); 
        NvecEven(i/2) = N; 
    end 



end 
  
% PDL> Solve for d = 2, storing the matrix and then calculating 
%  the eigenvalues using eigs() 
  
for i=1:length(Nvec), 
    N = Nvec(i) 
    delPhi2D = spalloc(N^2,N^2,5*N^2); 
    for k=1:N^2, 
        if (k>N) 
            delPhi2D(k,k-N) = -1; 
        end 
        if (k>1) 
            delPhi2D(k,k-1) = -1; 
        end 
        delPhi2D(k,k) = 4; 
        if (k<N^2) 
            delPhi2D(k,k+1) = -1; 
        end 
        if (k < N^2 - N + 1) 
            delPhi2D(k,k+N) = -1; 
        end 
    end 
 % PDL> Store the data that we get at each stop for plotting later. 
    [useless, eigMat] = eigs(delPhi2D,2,'BE',opts); 
    dim2Large(i) = eigMat(2,2); 
    dim2Small(i) = eigMat(1,1); 
    dim2CondNum(i) = dim2Large(i)/dim2Small(i); 
    if mod(i,2) == 0 
        dim2SmallEven(i/2) = eigMat(1,1); 
        dim2LargeEven(i/2) = eigMat(2,2); 
        dim2CondNumEven(i/2) = eigMat(2,2)/eigMat(1,1); 
    end 
end 
  
%PDL> Solve for d = 3, but this time not storing the matrix.  We'll 
%  use a separate function to calculate Av given v. 
Nvec2 = linspace(2,20,10); 
for i=1:length(Nvec2), 
    N = Nvec2(i) 
    [useless, eigMat]  = eigs('marksty_calc_Av_3D',N^3,2,'BE',opts); 
    dim3Small(i) = eigMat(1,1); 
    dim3Large(i) = eigMat(2,2); 
    dim3CondNum(i) = dim3Large(i)/dim3Small(i); 
end 
  
  
% PDL> Plot and label graphs. 
figure(1) 
plot(Nvec,dim1Large,'--') 
hold on 
plot(Nvec,dim1Small) 
plot(Nvec,dim2Large,'-.'  )
plot(Nvec,dim2Small,'.') 
xlabel('Number of grid points per dimension') 
ylabel('Eigenvalue') 



legend('Largest, d=1','Smallest, d=1','Largest, d=2','Smallest, 
d=2',... 
    'Location','Best'); 
title('FD approximation of the Poisson equation: Problem 3.B.2') 
hold off 
  
figure(2) 
plot(NvecEven,dim1LargeEven,'--') 
hold on 
plot(NvecEven,dim1SmallEven) 
plot(NvecEven,dim2LargeEven,'-.') 
plot(NvecEven,dim2SmallEven,'.') 
xlabel('Number of grid points per dimension') 
ylabel('Eigenvalue') 
legend('Largest, d=1','Smallest, d=1','Largest, d=2','Smallest, 
d=2',... 
    'Location','Best'); 
title('FD approximation of the Poisson equation, only even N: Problem 
3.B.2') 
hold off 
  
figure(3) 
plot(Nvec2,dim3Large,'--') 
hold on 
plot(Nvec2,dim3Small) 
xlabel('Number of grid points per dimension') 
ylabel('Eigenvalue') 
legend('Largest eigenvalue','Smallest eigenvalue','Location','Best'); 
title('FD approximation of the Poisson equation, d=3, even N: Problem 
3.B.2') 
hold off 
  
figure(4) 
plot(Nvec,dim1CondNum) 
hold on 
plot(Nvec,dim2CondNum,'--') 
xlabel('Number of grid points per dimension') 
ylabel('Condition number') 
legend('d = 1','d = 2','Location','Best') 
title('Condition numbers for a large range of N for the Poisson 
equation: Problem 3.B.2') 
hold off 
  
figure(5) 
plot(Nvec(1:19),dim1CondNum(1:19)) 
hold on 
plot(Nvec(1:19),dim2CondNum(1:19),'--') 
plot(Nvec2,dim3CondNum,'-.') 
xlabel('Number of grid points per dimension') 
ylabel('Condition number') 
legend('d = 1','d = 2','d = 3','Location','Best') 
title('Condition numbers for small N for the Poisson equation: Problem 
3.B.2') 
hold off 
 
function Av = marksty_calc_Av_3D(v) 



  
% Input: any one-dimensional vector v 
% Output: a vector Av the same size as v 
  
% PDL> Calculate values of N, N^2, and N^3. 
vecSize = length(v); 
N = round(vecSize^(1/3)); 
Nsq = round(N^2); 
Ncu = vecSize; 
  
% PDL> Figure out all of the special cases... subtract values 
%  as appropriate. 
  
% We note that we would like to just implement the equation as shown 
%  in the text, but in some cases that would entail using values 
%  outside of the vector bounds.  (For example, if we're on row 
%  1, then we can't use the value from 1-N.)  So, we just make 
%  sure we're doing something legitimate every step along the way. 
for k=1:vecSize 
    Av(k) = 0; 
    if k > Nsq 
        Av(k) = Av(k) - v(k - Nsq); 
    end 
    if k > N 
        Av(k) = Av(k) - v(k - N); 
    end 
    if k > 1 
        Av(k) = Av(k) - v(k - 1); 
    end 
    Av(k) = Av(k) + 6*v(k); 
    if k < Ncu 
        Av(k) = Av(k) - v(k + 1); 
    end 
    if (k < Ncu - N + 1) 
        Av(k) = Av(k) - v(k + N); 
    end 
    if (k < Ncu - Nsq + 1) 
        Av(k) = Av(k) - v(k + Nsq); 
    end 
end 
 
 
So here are the graphs.  We note that for higher dimensions, the highest eigenvalue 
displays a “sawtooth”-type pattern when both odd and even values are used for low 
values of N.  This is somewhat intuitive, as the switch between odd and even number of 
grid points in such a coarse approximation may significantly change the character of the 
solution.  (They are representing significantly different points.)  On the other hand, 
steadily increasing in only even values or only odd values of N will only be a refinement 
of the system and won’t drastically change anything.  Both graphs are correct; they are 
both included for completeness. 
 







 
 
Grading: 
1 point each for the cases of d=1,2,3 
(-0.25 point): Not calculating and plotting condition number 
Credit was not given for d=3 if you stored the matrix A… you had to make a function 
that returned Av in order to get credit. 


