
10.34. Numerical Methods Applied to Chemical Engineering 
HW 8. Brownian Dynamics and Monte Carlo simulation 

Due Wednesday 11/30/2005. 9am 

Submit a Word document username_HW8.doc and the files for each program. 

Problem 1. Brownian motion in an external field 

Consider the Brownian motion in the x-direction of a spherical particle of radius Rp and 
density ρp moving in a Newtonian fluid of viscosity µf . Stokes’ law gives a drag constant 
of ζ = 6πµf Rp . The particle experiences an external potential energy field U x( )  such that 
the force imparted to the particle by the field is –(dU x) . Let us say that the fluid itself is⁄ d 

moving in the x-direction with a velocity Vf . With a random force FR t( )  due to collisions 
with individual fluid molecules, Newton’s second law of motion for the particle is 

x m
dv

= – ζ(v – Vf) – 
dU 

+ FR t( )  (EQ 1)xtd xd 

4As shown in class, the mass of a particle, m = ---πρpR
3 , becomes negligibly small comparedp3 

to the drag constant ζ = when R  is very small. This results in extremely short6πµf Rp p 

velocity correlation times τ = m ⁄ ζ . If we are concerned only with the observed motion ofv 

the particle on times scales long compared to τ , we can neglect the inertial effects comv 

pletely by taking the limit m → 0 while holding ζ constant. In this limit, the motion of the 
particle follows 

0 = – ζ(v – Vf) – 
dU 

+ FR t( )  (EQ 2)x xd 

Upon rearrangement, and multiplying by dt , using dx = v dt , this yieldsx

Vf – ζ 1– dU
dx = dt + ζ 1– 

FR t( )dt (EQ 3) 
xd 

As we have shown in class, in the case where Vf = 0 , U x( )  = 0 , we get the correct statistical 
properties of the random displacement by simulating the SDE (Stochastic Differential 
Equation) 

⁄
dx = (2D)1 2

dWt (EQ 4) 

For a finite time step ∆t , we have the simulation algorithm 

x(t + ∆t) – x t
⁄( )  = (2D)1 2∆Wt (EQ 5)

∆Wt is a random number generated at each time step with 
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∆Wt = ( ∆t)θ P θ 1( ) = ----------e 
–θ2 ⁄ 2 

(EQ 6)
2π 

∆Wt is drawn from a normal distribution with a mean of zero and a variance of σ2
= ∆t . 

Therefore, to agree with this limiting case, we write the SDE for the particle motion in a 
moving fluid and an external field as 

Vf – ζ 1– dU ⁄
dx = dt + (2D)1 2

dWt (EQ 7) 
xd 

x t( )  

which yields the simulation algorithm 

Vf – ζ 1– dU 
x(t + ∆t) – x t( ) = ∆t

⁄( ) + (2D)1 2∆Wt (EQ 8) 
xd 

x t( )  

As shown in class, the drag constant and the diffusivity are related by Einstein’s relation 

kbT 
D = -------- (EQ 9)

ζ 

Part 1.A. 

Considering the SDE above, we see that if we had no random force, we would have a 

deterministic velocity of the particle equal to vp = Vf – ζ 1– dU . So, the deterministic (non
xd 

x t( )  

random) part of the SDE appears to describe convective motion, and the random part (as 
we have seen) describes diffusive motion. This appears to suggest that the probability dis

( ,tribution p t  x) follows a convection/diffusion equation 

2 
∂p 

= – ∂ [vpp t  x)] + D
∂ p 

(EQ 10)∂t ∂x 
( , 

∂x 
2 

In fact, it is shown in the text that for a system described by the SDE 

( , ( ,dx = a t x)dt + b t x)dWt (EQ 11) 

the probability distribution is governed by a corresponding Fokker-Planck equation 

∂p 
= – ∂ [ a t  x)p t  x)] + 

1--- ∂ 2 

{[ b t  x)]2
p t  x)} (EQ 12)∂t ∂x 

( , ( , 
2∂x 

2 
( , ( , 

Here, you are asked to perform a number of Brownian dynamics simulations to demon
strate that the probability distribution does indeed follow this convection/diffusion equa-
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tion in the case of a constant fluid velocity and in the absence of an external field,Vf 

( ) = 0 .U x

If we release a particle at x = 0 at time t = 0 , the initial condition is p(0, x) = δ x( ) . 

1.A.1. First, show that the solution of the convection/diffusion equation is 

21 
p(t x) = --------------e 

–(x – µ)2 ⁄ (2σ ) µ = Vf t 
, (EQ 13) 

σ2σ 2π = 2Dt 

1.A.2. Next, perform a large number of Brownian dynamics simulations of individual par
ticles for the case D = 1 , = 1 . Using the MATLAB histogram routines, generate approx-Vf 

( , , ,  ,  ( ) thatimate probability distributions p t x) at t = 0.5 1 2 3  from the random trajectories x t

( ,you generate in the simulations. Plot these vs. the analytical p t x) to demonstrate that 
( ,indeed the Brownian dynamics simulations result in the correct p t x) . Store your program 

as username_HW8_1A.m. 

Part 1.B. 

Now, set = 0 and let us introduce a spatially-periodic potentialVf 

U x xπ( ) = E [ sin ( )]2 
(EQ 14)a 

of periodicity U x ± m) = U x , , ,  … . This potential consists of a sequence of( ( ) , m = 0 1 2 3  

energy barriers of height E  each separated by a distance of one.a 

Perform a Brownian dynamics simulation using periodic boundary conditions on the 
xdomain 0 ≤ ≤ 1 in which at any time the particle exits the domain, it is shifted by ±1 to 

bring it back inside the domain. Since the potential energy is also periodic, this shifting 
has no deleterious effect on the simulation, and it enables us to compare the measured 
probability distribution P x( ) over the course of the simulation with the Boltzmann distri
bution 

( ) ⁄ k T–U x b

( ) = ------------------------------------ (EQ 15)P x
e 

1 –U x

∫ 0 

( ) ⁄ k Tbe dx

In your Brownian dynamics simulation, you should not start sampling the distribution of x 
until you have run the simulation for a while to “equilibrate” the system. Simulate the 
motion of a particle at T = 1 , E = 1 , D = 1 and demonstrate that the Brownian dynamicskb a 

simulation samples properly from the equilibrium distribution. That is, the probability dis
tribution measured from the trajectory x t( ) agrees with the Boltzmann distribution. Store 
your program as username_HW8_1B.m. 

Part 1.C. Part 1.C. 
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Part 1.C. Part 1.C. 
Consider again the same external potential, but now do not use the periodic boundary con
ditions. Instead, generate trajectories x t ,( ) that are not shifted in space to remain in [ 0 1] . In 
the limit E « kbT , the energy barriers are negligibly small and the particles essentiallya 

undergo “regular” diffusion. But, when E  becomes comparatively large relative to kbT ,a 

we expect the barriers to be difficult to overcome such that the particle trajectories become 
“trapped” between barriers for a long time until they are finally able to “jump” to the next 
energy well. If we then continue the simulation over very long periods of time such that 
each trajectory has experienced many jumps, and we measure at various times the mean 

2 
x ( ) , we can estimate the effective diffusivity,squared displacement, 〈 t 〉 Deff , in the pres

ence of the barriers from the relation x 
2 

t = eff t as t → ∞ .( )〉 2D〈 

Perform this calculation to measure Deff when D = 1 for E = 0.1 0.5 1 2 3 4 5 when,  ,  ,  , , ,a 

kbT = 1 and plot ln Deff vs. E . A reasonable prediction of how the effective diffusivitya 

should be affected by the barrier height is 

Deff = De
–Ea ⁄ kbT 

(EQ 16) 

Compare the results of your calculation to this functional form to see if it is an accurate 
description of the effect of energy barriers on long-time diffusive motion. Store your pro
gram as username_HW8_1C.m. 

Problem 2. Metropolis Monte Carlo Simulation 

Consider again the 1-D system with the periodic potential energy 

U x xπ( ) = E [ sin ( )]2 
(EQ 17)a 

Write a program to sample the NVT equilibrium distribution of x using Metropolis Monte 
Carlo for the case E = 1 , T = 1 , and show that the results agree with the Boltzmann dis-a kb

tribution 

( ) ⁄ k T–U x b

( ) = ------------------------------------ (EQ 18)P x
e 

1 –U x

∫ 0 

( ) ⁄ k Tbe dx

xwhere again you use periodic BC to maintain the particle within 0 ≤ ≤ 1 . 

Problem 3. Simulated Annealing 

Consider the cost function 

F x πx πx( ) = 0.5x 
2 

+ cos ( ) + sin (2πx) + cos (3πx)sin ( )  (EQ 19) 

plotted in the figure below. 
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Clearly, the cost function has many local minima, and it would be very difficult to find the 
global minimum using the deterministic techniques that we developed in chapter 5. Unfor
tunately, such irregular cost functions are not uncommon, especially when attempting to 
compute the minimum energy geometry of a molecule or a crystal. 

Write a program that uses simulated annealing to identify the global minimum from a ran
dom initial guess. Store your program as username_HW8_P3.m and provide directions 
for its use. 

Problem 4. Monte Carlo Integration 

Solve problem 4.A.2 of the text, storing your program as username_HW8_P4.m. 
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