Latency, duration and codes for objects in inferior temporal cortex

Gabriel Kreiman, Chou Hung, Tomaso Poggio, James DiCarlo

Center for Biological and Computational Learning Computation and Systems Biology Initiative McGovern Institute for Brain Research

Massachusetts Institute of Technology

Recognition can be very fast

Stimulus presentation

•Recordings of spiking activity from macaque monkeys

•Recordings in an area involved in object recognition (inferior temporal cortex)

- •10-20 repetitions per stimulus
- Presentation order randomized
- 77 stimuli drawn from 8 pre-defined categories

Recordings made by Chou Hung and James DiCarlo

Reading the neuronal code

Neuron 1	Neuron 2	Neuron 3	Object
¥es	N8	N8	1
Yes	Yes	No	2
Yes	Yes	Yes	

Mind reading \rightarrow Neuronal reading Can we read out what the monkey is seeing?

Input to the classifier

MUA: spike counts in each bin

LFP: power in each bin

MUA+LFP: concatenation of MUA and LFP

Accurate read-out of object category and identity from a small population

Hung*, Kreiman*, Poggio, DiCarlo. Science 2005

Hung*, Kreiman*, Poggio, DiCarlo. Science 2005

Local field potentials (the "input") also show selectivity

MUA: multi-unit spiking activity SUA: single-unit spiking activity LFP: local field potentials MUA & LFP: MUA combined with LFP

Kreiman*, Hung*, Kraskov, Quiroga, Poggio, DiCarlo. Neuron 2006

The classifier extrapolates to new scales and positions

Other observations

- We can decode information from local field potentials. MUA+LFP > MUA > LFP
- Feature selection significantly improves performance. Choosing the "best" neurons >> randomly selecting neurons
- We can decode the time of stimulus onset
- We can also read out coarse "where" information
- Decoding is robust to internal and external perturbations
- The population can extrapolate to novel pictures within known categories

We can decode object information from the model units

Serre, Kouh, Cadieu, Knoblich, Kreiman, Poggio. MIT Al Memo 2005

The model shows scale and position invariance

Latency, duration and codes for objects in inferior temporal cortex

Gabriel Kreiman, Chou Hung, Tomaso Poggio, James DiCarlo

Center for Biological and Computational Learning Computation and Systems Biology Initiative McGovern Institute for Brain Research

Massachusetts Institute of Technology