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1 Miyashita experiment

The monkey was trained on a task involving visual short-term memory. The sample and
match stimuli were one of 97 randomly generated ”fractal” color patterns. Both sample
and match were presented for 200 ms. During the 16 second delay between sample and
match, no visual stimulus was presented. During training, the sample cycled through a
fixed sequence, while the match was chosen at random.

During the test phase, single unit recordings were made in anterior ventral temporal
cortex. Now the sample stimulus was presented in random sequence. For the learned
stimuli, there was strong delay activity. Neural response was selective for only a few
learned stimuli. The delay activity patterns for stimuli that were adjacent in time during
training were correlated with each other.

Caveat: The delay activity was weak for the 97 new stimuli. However, short-term
memory performance on new patterns was as good as on old.

The delay activity patterns could be the fixed point attractors of the Hopfield model.
But the attractors in the Hopfield model are uncorrelated with each other, so some
modification of the model is necessary.

2 The GTA model

To model the Miyashita experiment, Griniasty, Tsodyks, and Amit proposed a modifi-
cation of the Hopfield model with the following weight matrix:

Wij =
1

N

P∑

µ=1

(ξµi ξ
µ
j + aξµ+1

i ξµj + aξµ−1
i ξµj )

The ordering of the patterns is supposed to be the order of presentation during training.
And for simplicity, the ordering is assumed to be cyclic, so that ξN+1

i = ξ1
i .

The natural order parameters are the overlaps

mµ =
1

N

N∑

i=1

ξµi si
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Since
∑

j

Wijsj =
1

N

P∑

µ=1

(ξµi + aξµ+1
i + aξµ−1

i )
∑

j

ξµj sj

It follows from the update rule

s′i = sgn


∑

j

Wijsj




that the stationary states satisfy

mµ =
1

N

∑

i

ξµi sgn

(∑

ν

mν(ξνi + aξν+1
i + aξν−1

i )

)

If we now average this by randomizing the patterns, then the average at each neuron is
the same, so that we can drop the index i:

mµ = 2−P
∑

ξ

ξµ sgn

(∑

ν

mν(ξν + aξν+1 + aξν−1)

)

Let’s consider the stability of a pure pattern solution, for example m2 = 1 with all
other overlaps zero. If a < 0.5, then the right hand side of the above equation is

1

N

∑

i

ξµi sgn(ξ2
i + aξ3

i + aξ1
i ) = δµ2

in the N → ∞ limit, since sgn(ξ2
i + aξ3

i + aξ1
i ) = ξ2

i . If a > 0.5, then the situation
is different. On average, ξ3

i = ξ1
i = −ξ2

i for one quarter of the neurons, so that
sgn(ξ2

i + aξ3
i + aξ1

i ) = −ξ2
i . Therefore the right hand side is 0.5(δµ1 + δµ2 + δµ3).

We can numerically solve by iterating the fixed point equations to a steady state.
For 0.5 < a < 1, this converges to a state with a radius of five nonzero overlaps. If
a > 1, the stable states have overlap with all stored patterns.

Suppose that mµ is the vector of overlaps at a steady state. Then the steady state is
of the form

si = sgn

(∑

µ

mµ(ξµi + aξµ+1
i + aξµ−1

i )

)

So if each attractor has overlap with several patterns, then the attractors associated with
different patterns must also overlap.

3 Associative memory with sparse patterns

The ±1 symmetry in the Hopfield model is rather artificial. The activity patterns in
the brain are generally sparse. That is, the number of active neurons is much smaller
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than the total number of neurons. To treat the case of sparse patterns, it is convenient
to switch to si = 0 or 1, and write the dynamics as

si(t+ 1) = H


∑

j

Wijsj(t)− θ


 (1)

where θ is a threshold, H is the Heaviside step function, and Wij are the synaptic
weights.

Let P random patterns be given, ξµi with µ = 1 to P . Each component is one
with probability f and zero with probability 1− f . How should W be chosen so as to
embed the patterns as attractors of the network dynamics? A number of Hebbian rules
are considered below.

4 Covariance rule

The covariance rule is

Wij =
1

Nf(1− f)

∑

µ

(ξµi − f)(ξµj − f)

Before we go into a detailed analysis of the covariance rule, let’s obtain some rough
intuition as to why it works. The basic reason is that the formula

∑

j

Wijξ
µ
j ≈ ξµi − f

is approximately true. If this formula were exactly true, ξµ would be a steady state of
the dynamics (1), provided that the threshold θ were set somewhere between 1− f and
−f .

This approximate formula is true in turn, provided that the following “orthogonal-
ity” condition is approximately satisfied:

1

Nf(1− f)

∑

j

(ξµj − f)ξνj ≈ δµν

The µ 6= ν term is small because ξµj − f is a zero mean random variable, and uncorre-
lated with ξνj . The approximation becomes better as N →∞ with f held fixed.

Now let’s do a calculation to see when the above approximations are accurate. In
the following we’ll take the limits N → ∞ and P → ∞ with their ratio α = P/N
held fixed.

∑

j

Wijξ
ν
j ≈ 1

Nf(1− f)

∑

µ

(ξµi − f)
∑

j,j 6=i
(ξµj − f)ξνj (2)

≈ (ξνi − f) +
1

Nf(1− f)

∑

µ,µ6=ν
(ξµi − f)

∑

j,j 6=i
(ξµj − f)ξνj (3)
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The first term is the “signal,” while the second term is the “noise.” If the noise term
were zero, ξν would be a steady state for any threshold θ between 1 − f and −f .
This will still be true with high likelihood if the noise is much smaller than the signal.
Therefore it is important to estimate the size of the noise.

The noise term has zero mean and variance

σ2 = αf

Since the signal is order unity, we expect that αf � 1 should be a sufficient condition
for faithful storage. In other words, we estimate the capacity of the system to be αc ∼
1/f .

A more complicated calculation gives the result

αc ≈
1

2f | log f |

This has a logarithmic correction relative to the result derived by our simpler argument.
The capacity increases as the patterns become more sparse (f → 0). This makes

sense, as each pattern contains less information as f decreases.

5 Separating excitation and inhibition

The covariance rule is mathematically nice, but does not implement the biological con-
straint that excitatory and inhibitory neurons are distinct. An alternative is

Wij =
1

Nf(1− f)

∑

µ

(ξµi ξ
µ
j − f2)

This can be implemented by a network of N excitatory neurons and a single global
inhibitory neuron.
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