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MIT Department of Brain and Cognitive Sciences 
9.29J, Spring 2004 - Introduction to Computational Neuroscience 
Instructor: Professor Sebastian Seung 

Problem Set 8 (due Thurs May 6) 
Models of Associative Memory 

April  29, 2004 

1. Capacity of the Hopfield Model. 

Consider the Hopfield model, using a sequential update, given by 

si = sign( Wij sj ) 
j 

1 

Wij = N µ ξi
µξj

µ i = j 

0 i = j 

where s ∈ {−1, 1}N . (Sequential update means that the neurons are updated one at a time, typically in random 
order.) 

One definition of the capacity of the Hopfield model is the number of patterns that can be stored where some 
small fraction (Perr ≤ 0.01) of the bits are corrupted. Using this definition, the capacity of the original Hopfield 
model is approximately 0.14N for large N , where N is the number of units in the network. In this problem, 
we will  validate this capacity using a simple MATLAB  simulation, and then use our simulation to compare the 
capacities of original Hopfield model with the capacities of a network storing sparse patterns using {0, 1} units. 

(a) Construct P random {−1, 1} patterns, ξ1, ..., ξP , each of size N . Find W using the prescription given 
above. 

We investigate the capacity by checking if  each of the stored patterns are actually steady states of the 
system. The weight update from a stored pattern ξν can be written as: 

1 
si = sign(ξν + 

N
ξi

µξj
µξj

ν ).i 
µ=ν j=i 

We would like si to equal ξi
ν , but our steady state could be corrupted by the zeromean crosstalk term. To 

visualize this in MATLAB,  collect the terms j Wij ξj
u for all i and all µ and make a histogram of the 

results. To get a nice plot, use N = 1000 and 50 bins instead of MATLAB’ s default of 10. 

Submit your matlab code and plots for P = 100, 200, and 140 (the known capacity for N → ∞). Describe 
in words how the shape of the histogram changes as we change P , and how this impacts the capacity. 

2. Storing binary patterns using the covariance rule. 

In this problem, we will  consider a sparse network. This means that instead of the {−1, 1} network used in the 
previous problem, we will  use {0, 1} units. The patterns that we wish to store are random with each bit having 
probability f of being a 1. We are interested in the case where f is small. 

The network is defined by the covariance rule: 

1 
N f (1−f ) µ(ξi

µ − f )(ξj
µ − f ) i = j

Wij = 
�

0 i = j 
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with the discrete dynamics: � 
xi = H( Wij xj − θi) 

j 

where His the Heaviside function: H(u) = 1 if u > 0, otherwise H(u) = 0. 

ν ν(a) Show that for large Nand small fthe sum j Wij ξj can be separated into ξand a crosstalk term. i 

(b) Show that this crosstalk term has zero mean. 

(c) Construct P random {0, 1} patterns, each of size N , using f as the probability of a 1 bit. Plot the histogram 
µof j Wij ξj as in part a. Experiment with P to estimate the capacity for N = 1000 and f = 0.05. 

(d) According to your simulations, what value of the threshold θi maximizes the capacity?

N
(e) One published result estimates the capacity of the sparse network as P = 2f | log(f ) . How well does this 

quantity compare to your results (test this by varying Nand f)? 
| 

3. Storing binary patterns using another rule. 

As in the previous problem, we will consider a network with {0, 1} units but with a different rule: 

µ1 (ξµξj − f2) i = j
Wij = N f µ i 

0 i = j 

with the discrete dynamics: � 
xi = H( Wij xj − θi). 

j 

(a) Repeat (a)(d) from the previous problem using this network. 

(b) Extra credit: Derive an expression for the capacity P in terms of N and f. 

4. Compare the capacities of the 3 networks considered. 
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