Problem Set 7 (due Thurs Apr 29) Simulation of synaptic inputs

April 23, 2004

1. Simulate an integrate-and-fire neuron with a whole mess of synaptic inputs, as follows. (This model is based on that in S. Song, K.D. Miller, and L.F. Abbott, "Competitive Hebbian learning through spike-timing-dependent synaptic plasticity", Nat. Neurosci., 3(9):919-26, Sep. 2000. You won't have to deal with synaptic plasticity in your version, for which you can be grateful.)
The time evolution of the membrane potential V is given by

$$
\tau_{m} \frac{d V}{d t}=V_{\text {rest }}-V+g_{e x}(t)\left(E_{\text {ex }}-V\right)+g_{i n}(t)\left(E_{\text {in }}-V\right)
$$

When V reaches $V_{\text {thresh }}$, the neuron fires and the potential returns to $V_{\text {reset }}$. There are $N_{e x}$ excitatory neurons and $N_{i n}$ inhibitory neurons providing input to the cell, with synaptic conductances $g_{e x}$ and $g_{i n}$. These conductances change according to the firing of their respective input neurons: when input neuron i fires, $g_{e x}(t)$ is incremented by $\bar{g}_{e x}$ or $g_{i n}(t)$ is incremented by $\bar{g}_{i n}$, depending on whether the input neuron was excitatory or inhibitory. Between incoming spikes, both synaptic conductances decay exponentially:

$$
\tau_{e x} \frac{d g_{e x}}{d t}=-g_{e x} ; \quad \tau_{i n} \frac{d g_{i n}}{d t}=-g_{i n}
$$

Have all the input neurons fire according to a Poisson process, with rate $\lambda_{e x}$ or $\lambda_{i n}$.
Got all that? Here are your parameter values: $\tau_{m}=20 \mathrm{~ms}, V_{\text {rest }}=-70 \mathrm{mV}, E_{e x}=0 \mathrm{mV}, E_{\text {in }}=-70 \mathrm{mV}$, $V_{\text {thresh }}=-54 \mathrm{mV}, V_{\text {reset }}=-60 \mathrm{mV}, \tau_{e x}=\tau_{\text {in }}=5 \mathrm{~ms}, N_{\text {ex }}=1000, N_{\text {in }}=200$.
By adjusting the values of the constants $\bar{g}_{e x}, \bar{g}_{i n}, \lambda_{e x}, \lambda_{i n}$, you can make the output neuron fire regularly, or very irregularly. Turn in plots of V as a function of time demonstrating both kinds of firing, along with the values you used for these parameters. Try $\bar{g}_{e x}=0.015, \bar{g}_{i n}=0.05, \lambda_{e x}=\lambda_{i n}=10 \mathrm{~Hz}$ to start with.
2. In the regular firing case, estimate the firing rate analytically by computing the average synaptic conductances, and deriving a result similar to problem 4 b of problem set 5 . Check your result against your simulation.

