MIT Department of Brain and Cognitive Sciences 9.29J, Spring 2004 - Introduction to Computational Neuroscience Instructor: Professor Sebastian Seung

Problem Set 7 (due Thurs Apr 29) Simulation of synaptic inputs

April 23, 2004

 Simulate an integrate-and-fire neuron with a whole mess of synaptic inputs, as follows. (This model is based on that in S. Song, K.D. Miller, and L.F. Abbott, "Competitive Hebbian learning through spike-timing-dependent synaptic plasticity", *Nat. Neurosci.*, 3(9):919-26, Sep. 2000. You won't have to deal with synaptic plasticity in your version, for which you can be grateful.)

The time evolution of the membrane potential V is given by

$$\tau_m \frac{dV}{dt} = V_{rest} - V + g_{ex}(t)(E_{ex} - V) + g_{in}(t)(E_{in} - V)$$

When V reaches V_{thresh} , the neuron fires and the potential returns to V_{reset} . There are N_{ex} excitatory neurons and N_{in} inhibitory neurons providing input to the cell, with synaptic conductances g_{ex} and g_{in} . These conductances change according to the firing of their respective input neurons: when input neuron *i* fires, $g_{ex}(t)$ is incremented by \overline{g}_{ex} or $g_{in}(t)$ is incremented by \overline{g}_{in} , depending on whether the input neuron was excitatory or inhibitory. Between incoming spikes, both synaptic conductances decay exponentially:

$$\tau_{ex} \frac{dg_{ex}}{dt} = -g_{ex}; \qquad \tau_{in} \frac{dg_{in}}{dt} = -g_{in}$$

Have all the input neurons fire according to a Poisson process, with rate λ_{ex} or λ_{in} .

Got all that? Here are your parameter values: $\tau_m = 20 \text{ ms}$, $V_{rest} = -70 \text{ mV}$, $E_{ex} = 0 \text{ mV}$, $E_{in} = -70 \text{ mV}$, $V_{thresh} = -54 \text{ mV}$, $V_{reset} = -60 \text{ mV}$, $\tau_{ex} = \tau_{in} = 5 \text{ ms}$, $N_{ex} = 1000$, $N_{in} = 200$.

By adjusting the values of the constants \bar{g}_{ex} , \bar{g}_{in} , λ_{ex} , λ_{in} , you can make the output neuron fire regularly, or very irregularly. Turn in plots of V as a function of time demonstrating both kinds of firing, along with the values you used for these parameters. Try $\bar{g}_{ex} = 0.015$, $\bar{g}_{in} = 0.05$, $\lambda_{ex} = \lambda_{in} = 10$ Hz to start with.

2. In the regular firing case, estimate the firing rate analytically by computing the average synaptic conductances, and deriving a result similar to problem 4b of problem set 5. Check your result against your simulation.