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MIT Department of Brain and Cognitive Sciences 
9.29J, Spring 2004 - Introduction to Computational Neuroscience 
Instructor: Professor Sebastian Seung 

9.29 Problem Set 2 (due Feb. 19) 
More convolution and correlation 

Feb. 12, 2003 

1. Examples of convolution. In class, we studied the boxcar filter pi = (ρi−1 +ρi +ρi+1)/3 as a way of estimating 
probability of firing from a spike train. This can be written as p = ρ ∗ h, where h1 = h0 = h−1 = 1/3. For the 
following, fully  specify the h such that f = g ∗ h. 

(a)	 fi = gi − gi−1 (discrete approximation to the derivative) 

(b)	 fi = gi+1 − gi (another discrete approximation to the derivative) 

(c)	 fi = gi−5 (5 step time delay) 

(d)	 fi = gi+1 − 2gi + gi−1 (discrete approximation to the second derivative). For this example, also write 
down a matrix H such that f = gH. Assume that f and g have lengths 5 and 3 respectively, regard them 
as row vectors (note that the matrix given in the lecture notes is for column vectors). 

2. The conv  function is built in to MATLAB,  while the xcorr  function is part of the Signal Processing Toolbox. 
Imagine that you are a starving grad student (a modernday counterpart of Abe Lincoln), and cannot afford to 
purchase the Toolbox. Nevertheless, your fervent desire to study the art of signal processing drives you to write 
your own version of xcorr . 

Type help  xcorr  in MATLAB,  and read the description of the first invocation C=XCORR(A,B). Duplicate 
this with your own code. It shouldn’t take more than a few lines, if  you make use of the conv  function. (This 
exercise is supposed to teach you the relationship between correlation and convolution). 

3. Show that the convolution	 � ∞ 

x(t) = dt�g(t − t�)h(t�) 
0 

is the solution of the linear firstorder differential equation 

dx 
τ + x = g

dt 

where h(t) = τ −1e−t/τ for t ≥ 0, and g(t) is an arbitrary function of time. (Hint: integrate by parts). Now 
define h(t) = 0 for t < 0 (a kind of zero padding), and show that the convolutional formula above implies 

dh 
τ + h = δ 

dt 

where δ(t) is the Dirac delta function. This is why h is regarded as the impulse response for the differential 
equation. 

4. The optimal stimulus. Consider the linear filter 

ri = di−j sj 

j 

transforming stimulus s into response r using the kernel d. Suppose d is given, and consider a fixed i. The 
2optimal stimulus is defined as the s that maximizes ri, given the constraint that j sj = 1. The constraint 
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is necessary in the definition because the response can be made arbitrarily large by scaling up s by a constant 
factor.


Prove that the optimal stimulus is proportional to the kernel, sj ∝ di−j . This gives an interesting interpretation

of the kernel as the stimulus that is most effective at producing a large response.


Hint: Use the method of Lagrange multipliers from multivariate calculus (read the textbook for more about this). 

5. WienerHopf equations. In class we discussed the problem of optimizing the approximation 

M2

yi ≈ hj xi−j (1) 
j=M1 

with respect to the filter hi. It was stated without proof that hj is the solution of the WienerHopf equations 

M2

Cxy 
k = hj C

xx 
k−j , k = M1, . . . ,M2 (2) 

j=M1 

where the correlations are defined by � � 
Cxy 

k = xiyi+k Cxx 
l = xixi+l 

i i 

If not otherwise noted, all summations are from −∞ to ∞, and assumed to be finite. 

Derive the WienerHopf equations by minimizing the cost function ⎛ ⎞2 
M2� 1 � 

E = ⎝yi − hj xi−j ⎠ (3)
2 

i j=M1 

with respect to hj , for j = M1 to M2. You will need to compute the partial derivatives ∂E/∂hk , set them to 
zero, and play around with summations. 

6. Stimulus reconstruction from spike trains. In class, we discussed using the WienerHopf equations to model 
neural response as a filtered version of the stimulus. In this exercise, we’ll work in the opposite direction: the 
stimulus will be modeled as a filtered version of the spike train. This method was invented by Bill Bialek, Rob 
de Ruyter van Steveninck, and coworkers, and is described in Section 3.4 of Dayan and Abbott. We’ll apply it 
to the same Eigenmannia data that was used in the first problem set. Define yi = si − �s� and xi ,= ρi − �ρ�
where si is the stimulus and ρi is the spike train. Use the model of Eq. (1) with M1 = −100 and M2 = 300. 

If the spike train were white noise, the optimal filter would be of the form hk ∝ Cxy . This turns out to be a good k 
approximation, even though the spike train is not really white noise. Compute the crosscovariance of the spike 
train and the stimulus, and normalize by the number of spikes (this is similar to the spiketriggered average of 
the stimulus). Plot the filter h. Make sure to only plot the elements corresponding to hM1 , . . . , hM2 . 

7. Compute h ∗ x. Again, the challenge here is to discard the proper elements of the convolution so that h ∗ x lines 
up with the stimulus y. Plot the first 1000 elements of h ∗ x and y on the same graph. If you’ve done everything 
right, you should see very good agreement. Calculate the squared error of the approximation, as defined in Eq. 
(3). 

8. While the preceding filter is good, the optimal filter is found by solving the WienerHopf equations (2). Compute 
the appropriate elements of the autocovariance Cxx, and transform them into a matrix of the form Cxx 

j−k usingi 

the toeplitz command. Also compute the appropriate elements of the crosscovariance Cxy . Then solve the i 
WienerHopf equations for h using the backslash (\) command. Plot your result for h. 

9. Now for the Wiener filter, plot the first 1000 elements of h∗x and y on the same graph. If you’ve done everything 
right, the agreement should be even better than before. Calculate the squared error of the approximation, as 
defined in Eq. (3). This number should be lower than before. 
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