MIT OpenCourseWare http://ocw.mit.edu

9.01 Introduction to Neuroscience Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Taste and smell

Sebastian Seung

Sensory transduction

- How is the receptor potential generated?
 - ion channel
 - GPCR

Psychology of taste

- What is taste for?
 - Distinguish between food and poison
 - Distinguish between types of food
- How many basic tastes are there?
 - salt, sour, sweet, bitter
 - umami

Central taste pathways

- Three cranial nerves from tongue
- Medulla: gustatory nucleus
 - common pathway
- Thalamocortical pathway
 - -VPM
 - Gustatory cortex
 - Thought to be responsible for conscious perception

Most gustatory axons respond to more than one basic taste

• A distributed neural code

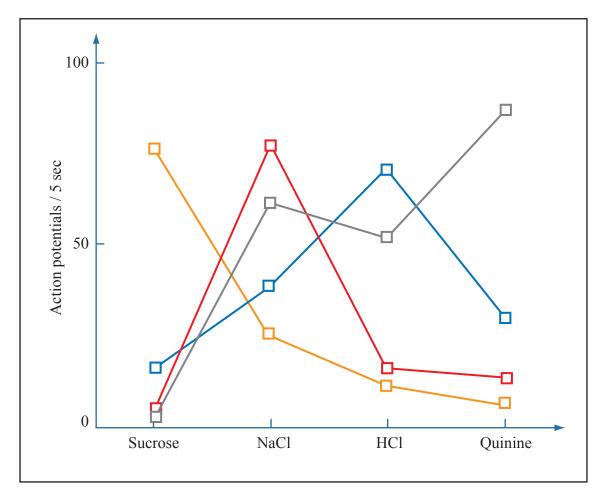


Figure by MIT OpenCourseWare. After Figure 8.4 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Taste receptor cells

- 50-150 in a taste bud
- Synapses onto gustatory afferents

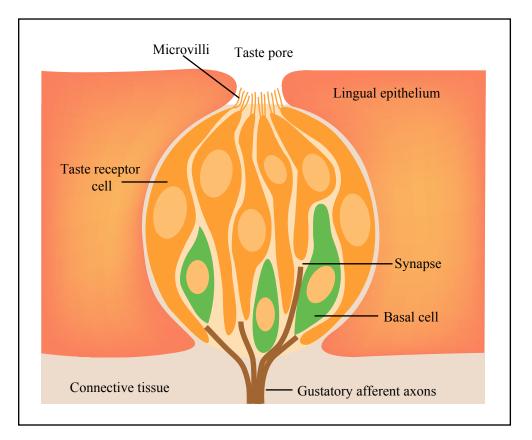


Figure by MIT OpenCourseWare.

Taste receptors

sweet	T1R2+T1R3	
umami	T1R1+T1R3	GPCR
bitter	T2R (~30 types)	
sour	PKD2L1	ion
salt	?	channel

Genetic manipulations

- Knockout
 - heterozygous
 - homozygous
- Transgenic

An alternate reality: labeled line encoding

cell type Different tastes are represented by the salt activation of nonoverlapping sets sour of neurons. A single neuron can sweet unambiguously signal the presence bitter of a taste.

salt

sour

stimulus

sweet

bitter

Most receptor cells respond to more than one basic taste.

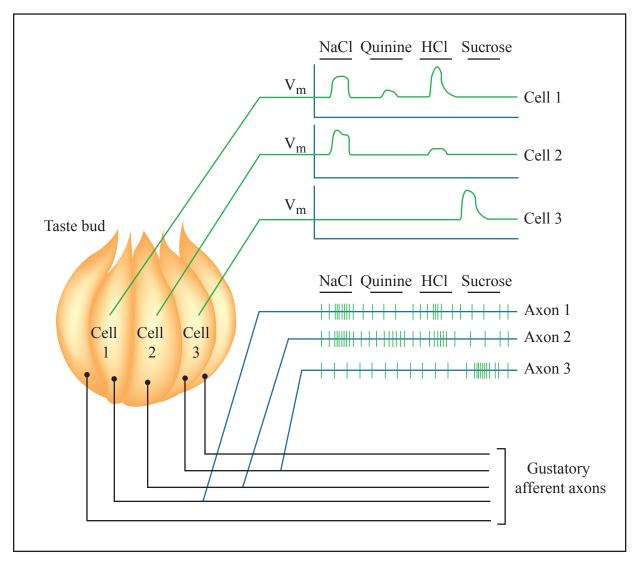


Figure by MIT OpenCourseWare. After Figure 8.3 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain*. 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Genetic variation in taste

- Phenylthiocarbamide (PTC)
 - supertasters: extremely bitter
 - medium tasters: bitter
 - nontasters: no taste
- TAS2R38
 - nontasters and tasters differ in three amino acids

Perception of flavor is complex

- combination of basic tastes
- smell

- other sensory modalities
 - texture
 - temperature
 - pain
 - vision

What is smell for?

Identify foods Communicate

How many smells are there?

- Professional "noses" can distinguish between thousands of scents.
- Are there basic smells?

Olfactory epithelium

Image removed due to copyright restrictions. See Figure 8.9 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Olfactory receptor neuron

- the axon projects to the olfactory bulb via the cribriform plate
- the dendrite sends cilia into the epithelium
- odorants bind to the cilia

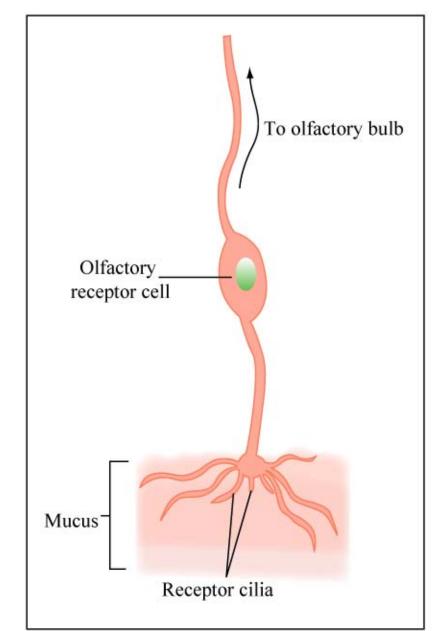


Figure by MIT OpenCourseWare. After Figure 8.10 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain*. 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Olfactory transduction

- odorant binds to receptor
- G-protein is activated
- adenylyl cyclase is activated
- cAMP binds to cation channel
- influx of Na and Ca causes depolarization
- amplified by Caactivated CI channels

Image removed due to copyright restrictions. See Figure 8.10 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Odorant receptor genes

- roughly 1000 genes in rodents
- each receptor cell expresses only one gene
- 2004 Nobel prize

Olfactory glomeruli

- 2000 glomeruli in the bulb
- axons of receptor neurons meet dendrites of second-order neurons

Image removed due to copyright restrictions. See Figure 8.14 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Each glomerulus receives input from one type of ORN

Image removed due to copyright restrictions. See Figure 8.16 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Central olfactory pathways

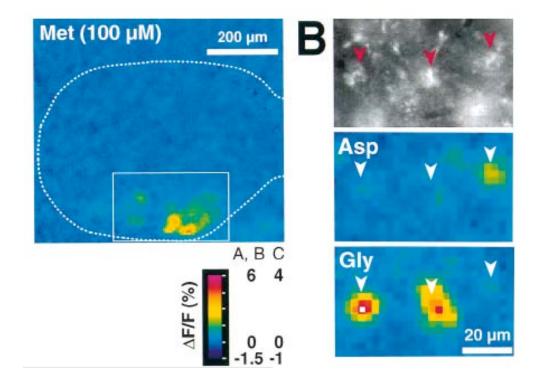

- direct pathway to olfactory cortex
- thalamocortical pathway to neocortex

Image removed due to copyright restrictions. See Figure 8.17 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Broad tuning of ORNs

Image removed due to copyright restrictions. See Figure 8.13 in Bear, Mark F., Barry W. Connors, and Michael A. Paradiso. *Neuroscience: Exploring the Brain.* 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins, 2007.

Calcium imaging

Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Friedrich & Korsching (1997)

Pheromones

- Secreted chemicals for communication
- Reproductive behaviors
- Territorial markings
- Identification of individuals
- Social hierarchy

Accessory olfactory system

- vomeronasal organ (VNO)
- to accessory olfactory bulb
- to hypothalamus

Image removed due to copyright restrictions.