MIT OpenCourseWare http://ocw.mit.edu

9.01 Introduction to Neuroscience Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

	1 of the Review Session:
	study for the final: FINAL IS ON DEC. 20 th FROM 9-12 IN DUPONT
-	
	2/3 of the final will be on new material = 30 multiple choice & ~2 long answers
	1/3 of the final will be on old material = 15 multiple choice & ~2 long answers
d.	······································
	eview of material:
a.	CHEMICAL CONTROL OF THE BRAIN
	i. Lecture: 11/14
	ii. Readings: Chapter 15
b.	BRAIN DISORDERS AND ALZHEIMER'S DISEASE
	i. Lecture: 11/19
	ii. Readings: Prof. Tsai PowerPoint Presentation (on MIT Server) & Chapter 22
С.	EATING AND MOTIVATION (CHEM. CONTROL OF BRAIN II)
	i. Lecture: 11/26
	ii. Reading: Chapter 16
d.	ATTENTION
	i. Lecture: 12/03
	ii. Reading: Prof. Desimone PowerPoint Presentation (on MIT Server) & Chapter 2

CHEMICAL CONTROL OF THE BRAIN

Patterns of communication in the nervous system [figure 15.1; page 483]

(1) Point-to-point systems \rightarrow neurons synapse on a few neurons [ex. Dorsal thalamus to neocortex]

(2) Hormones released by the secretory hypothalamus [pages 484-489]

- a. Secretory hypothalamus regulates homeostasis
 - i. Homeostasis = maintenance of body's internal environment (temp, blood volume, pressure, oxygen and glucose concentrations.
- b. Structure of secretory hypothalamus
 - i. Three functional zones: lateral, medial, and periventricular
 - ii. Periventricular zone: contains groups of cells:
 - 1. SCN (suprachiasmatic nucleus) \rightarrow synchronizes circadian rhythms
 - 2. controls autonomic nervous system (ANS)
 - 3. <u>neurosecretory cells that innervate pituitary</u>
- c. Control of **posterior pituitary**
 - i. Magnocellular neurosecretory cells extend axons down into posterior pituitary
 - ii. These cells release chemicals (neurohormones) directly into capillaries of posterior lobe

(into the general circulation)

ADH (vasopressin):

Image removed due to copyright restrictions.

oxytocin:

d. Control of anterior pituitary

- i. Note: anterior pituitary is an actual gland, while posterior pituitary is part of the brain
- ii. Parvocellular neurosecretory cells do not extend all the way into the lobe
- iii. The cells release <u>hypophysiotropic hormones</u> into the <u>hypothalamopituitary portal</u> <u>circulation</u> (capillaries that run the stalk of the pituitary and branch into anterior lobe)
- iv. The hypophysiotropic hormones bind to receptors in pituitary and activation of receptors causes cells to secrete or stop secreting hormones into the general circulation.

ACTH:

Image removed due to copyright restrictions.

FSH & LH:

<u>TSH:</u>

PRL:

<u>GH:</u>

(3) Networks of neurons of ANS activate tissues in the body

- a. Perventricular zone hypothalamus also controls the ANS; nucleus of solitary tract
- b. Unlike the somatic motor system that controls targets via a monosynaptic pathway, ANS uses a <u>disynaptic pathway</u>
- c. Actions of ANS are usually carried out without conscious control and are typically multiple widespread and relatively slow (in comparison to somatic motor system).
- d. Two divisions: sympathetic vs. parasympathtic

	Sympathetic	Parasympathetic	Mennus Sigka
General effect	Fight, flight, fear, sex Increases heart rate Decreases digestion	Rest, digestion Decreases heart rate Increases digestion	CNS Sometic Sum Parasym
Point of origin	Middle of spinal cord (thoracic / lumbar)	Brain stem, sacral spinal cord	CALS
Ganglion location	Closer to cord	Closer to target organ	
Neurotransmitter	Preganglionic: Acetylcholine Postganglionic: Norepinephrine (except adrenal medulla, where it's both Norepinephrine and Epinephrine)	Preganglionic: Acetylcholine Postganglionic: Acetylcholine	Lach LNE Lach

e. Enteric division ("little brain")

- i. Neural system found in the lining of the esophagus, stomach, intestines, pancreas, and gallbladder. Controls the physiological process of <u>transport and digestion of food</u>.
- Relatively independent of CNS, but supplementary control from sympathetic and parasympathetic. (ie. Increased activity of sympathetic nervous system → decreases digestive function during stress response)

(4) Diffuse modulatory systems have divergent axonal projections

- a. <u>Core system of small set of neurons</u> (most from brainstem) influence many other neurons (axons make contact with more than 100,000 pathways).
- b. <u>Not classical synapses</u>; synapses release neurotransmitter into extracellular fluid and can diffuse to many neurons.

Autor Alis

Diffuse Modulator	y Systems:				
Neurotransmitter	Origin → Target	Function	Disorder americated wie	Treatment	Phuge shar Street It
Norepinephrine (NE)	Locus coeruleus → all over (pans) brain	novelty detector wakefulness	Depression	MAO O briandics	
Dopamine (DA)	Ventral tegnicultal accumilicons	motivating behavior	Ganizophrenia	halopenidol	Mamphet, Heroin Nicotine
	substantia	movement	Parkinsorrs	L-dopa	Nitriti
Seratonin (5HT)	Raphe all over nuclei	mood, pain control wakefuliness	Depression	MAO O fluoxetine bricycli (s	LGD
Acetylcholine (Ach)	Basal Nucleus→cortex meynert Medial septal→hippo- nuclei compus	>leaming, messiony	Alzheimer's		
	Pons/Midbrain ->Hhalan regyncentum	nus scusory stimuli	5		

c. Psychoactive drugs:

Figures from Brown Neuro website

- i. Hallucinogens produces hallucinations
- 1. ex. LSD = agonist at presynaptic serotonin receptors; inhibits raphe nuclei firing ii. Stimulants
 - 1 ex Cocaine :
 - 1. ex. Cocaine and amphetamine blocks catecholamine uptake, works on DA and NE systems; increases alertness and decreases appetitie

BRAIN DISORDERS AND ALZHEIMER'S DISEASE

(1) Brain Disorders – Mental Illness Chapter 22

a. Anxiety Disorders: inappropriate expression of fear (or fear that is not adaptive)

	Description	% Population	Misc.
Panic Disorder	Frequent panic attacks consisting of the	2% – Twice as	Onset after adolescence
	sudden onset of intense apprehension,	common in	and before age 50; half
	fearfulness, or terror; persistent worry of	women as in	also suffer from major
	further attacks.	men	depression
Agoraphobia	Severe anxiety about being in situation	5% – Twice as	Often adverse outcome of
	where escape is difficult or embarrassing;	common in	panic disorder
	avoidance of situations that seem	women as in	
	threatening.	men	
OCD	Characterized by obsessions (thoughts or	2% — Equal	Usually appears in young
	impulses perceived as inappropriate that	incidence	adult life; symptoms
	lead to anxiety) and compulsions (repetitive	among men	fluctuate in response to
	behaviors to reduce anxiety)	and women	stress levels

i. Biological Basis

- 1. stress response = <u>hypothalamic-pituitary-adrenal (HPA) axis</u> mediated response
- 2. regulation of HPA by <u>amygdala</u> activation of amygdale <u>stimulates</u> CRH release
- regulation of HPA by <u>hippocampus</u> activation of hippocampus <u>suppresses</u> CRH release; feedback inhibition

ii. Treatments

- 1. <u>psychotherapy</u>: repeated exposure to stimuli that causes anxiety
- 2. anxiolytic drugs: <u>benzodiazepines</u> (modulates GABA); <u>SSRIs</u> (selective serotonin reuptake inhibitor)

b. Affective Disorder: mood disorders

	Description	% Population	Misc.]
Major Depression	Lowered mood, decreased interest or pleasure in activities; symptoms may include loss of appetite, insomnia, fatigue, feelings of worthlessness and guilt, etc.	Most common affective disorder; 5% each year	Usually don't last more than 2 years; chronic form in 17% of patients; commonly recurs	
Bipolar Depression	Repeated episodes of mania, depression. Manic episode symptoms: inflated self- esteem, disinhibited and reckless behavior.	Type I – 1% Type II – .6%	Type II always associated with major depression	3

i. Biological Basis

- 1. <u>monoamine hypothesis</u> depression is result of deficit in NE and/or 5-HT diffuse modulatory system in brain
- <u>Diathesis-stress hypothesis</u> ("diathesis" = predisposition for a disease) depression is result of predisposition to disease and environmental factors; causes changes in HPA axis
- ii. Treatments
 - 1. <u>electroconvulsive therapy</u> (ECT)
 - 2. <u>psychotherapy</u> patient overcome negative views of themselves and future
 - <u>Antidepressant drugs</u> Tricyclic compounds, SSRIs, NE-selective reuptake inhibitors; MAOi
 - 4. <u>Lithium</u> highly effective in stabilizing mood of bipolar patients
- c. Schizophrenia: characterized by a loss of contact with reality and a disruption of thought, perception, mood and movement
 - i. Symptoms
 - 1. <u>positive symptoms</u> = presence of abnormal thoughts behaviors (ex. Delusions, hallucinations, disorganized speech, etc.)
 - 2. <u>negative symptoms</u> = absence of normal responses (ex. Reduced expression of emotion, flatness of affect, poverty of speech, memory impairment, etc.)
 - ii. Biological Basis
 - 1. genes and environment
 - 2. dopamine hypothesis activation of DA receptors in mesocorticolimbic system
 - 3. glutamate hypothesis diminished activation of NMDA receptors
 - iii. Treatments
 - 1. <u>neuroleptics</u> act on DA receptors, reduce positive symptoms, however side effects include Parkinson-like symptoms and tardive dyskinesia
- (2) Alzheimer's Disease Prof. Tsai's PowerPoint presentation
 - a. Pathological features of AD
 - i. Brain atrophy
 - ii. Amyloid plaques
 - 1. Amyloid Precursor Protein (APP) $\rightarrow A\beta \rightarrow$ Amyloid plaques

Images removed due to copyright restrictions.

- 2. Genetics of AD: mutations in APP, secretase enzymes, and ApoE4
- 3. <u>Example Experiment:</u> found transgenic mice over expressing APP had memory impairment and accumulated a compound called Aβ*56
 - i. to test if A β *56 is important for memory impairment, gave young health
 - rats purified A β *56 and found memory impairment
- iii. Neurofibrillary Tangles (NFT)
 - 1. Tau \rightarrow P-Tau (phosphorylated Tau) \rightarrow Tangles
 - 2. Tau is usually bound to microtubules. When phosphorylated by kinases (CDK5, etc.), Tau unbinds and aggregates into tangles.
 - 3. Tangles also found in other diseases.
 - 4. <u>Staining NFT</u> by silver staining, dyes, antibodies, etc.
 - 5. <u>Example exp.</u>: neurodegeneration in an inducible mutant Tau transgenic mouse

EATING AND MOTIVATION

(1) Three parts of hypothalamic regulation of homeostasis:

- a. <u>Humoral response</u>: hypothalamic neurons respond to sensory signals by stimulating or inhibiting release of pituitary hormones into bloodstream
- b. <u>Viseromotor response</u>: neurons in hypothalamus respond to sensory signals by adjusting balance of sympathetic and parasympathetic outputs of ANS
- c. <u>Somatic motor response</u>: lateral hypothalamic neurons inciting an appropriate somatic motor behavioral response (ex. Generating warmth by moving)

(2) Long-term regulation of feeding behavior

- a. <u>Anabolism</u> = the assembly of macromolecules such as glycogen and triglycerides from simple precursors
- b. <u>Catabolism</u> = process of breaking down complex macromolecules
- c. <u>Lipostatic hypothesis</u> = a hypothesis prosing that body fat is maintained homeostatically at a specific level
 - i. Must be communication between adipose tissue to the brain.
 - ii. Hormone <u>leptin</u> (encoded by ob gene) is <u>released by adipocytes</u> (fat cells) and regulates body mass <u>by directly acting on hypothalamic neurons</u> that <u>decrease</u> <u>appetite</u> and increase energy expenditure.
- d. Lateral hypothalamic syndrome = lesions of lateral hypothalamus lead to anorexia
- e. <u>Ventromedial hypothalamic syndrome</u> = lesions of ventromedial hypo. lead to obesity
- f. Effects of elevated leptin → inhibit feeding behavior

(figure 16.8, p. 517)

<u>Anorectic peptides</u> = peptides that diminish appetite (aMSH or CART)

g. <u>Effects of decreased leptin</u> → stimulates feeding behavior (figure 16.9, p. 517)

<u>Orexigenic peptides</u> = peptides that stimulate feeding behavior (NPY and AgRP)

(3) Short-term regulation of feeding behavior

- a. <u>Satiety signals</u> = a factor that reduces the drive to eat without causing sickness
 - i. Examples include <u>gastric distention</u> and <u>cholecystokinin</u> (CCK) released by the intestinal cells in response to food.
- <u>Ghrelin</u> = a peptide secreted by cells in the stomach that <u>stimulates appetite</u> by activating orexigenic neurons in the hypothalamus
- c. <u>Insulin</u> = a hormone released by the β cells of the pancreas; regulates blood glucose levels and important for anabolic and catabolic metabolism

(4) Why do we eat?

- a. <u>Electrical self-stimulation</u> = electrical stimulation that an animal can voluntarily deliver to a portion of its brain (rat presses lever to give electrical stimulation)
 - i. Repeated self-stimulation when stimulating electrode was placed in areas of medial forebrain bundle
- b. <u>Dopamine</u> stimulation of dopamine axons in lateral hypothalamus produced food cravings; depletion of DA resulted in animals *liking* food, but don't *seek* food.

- c. <u>Serotonin</u> abnormalities in brain serotonin regulation believed to contribute to eating disorders
- (5) Overview (know leptin, ghrelin, and insulin)

Image removed due to copyright restrictions.

ATTENTION

The state of selectively processing simultaneous sources of information

(1) Behavioral consequences of attention:

- a. Enhanced detection (experiment on p. 646)
 - i. Observer looks at fixation point, then give a neutral, invalid or valid cue
 - ii. Cueing to the correct side of where the target would appear made it easier to detect the flashed target
 - iii. Covert shift in attention even though eyes don't' move
- b. <u>Faster reaction times</u> (experiment on p. 647)
 - i. Attention can alter the speed of visual processing or the time it takes to make a decision to press the button
- (2) Neglect Syndrome: an attentional disorder
 - a. Appears to <u>ignore</u> objects, people and sometimes his own body to <u>one side of the center of</u> <u>gaze</u>. Common w/ right hemisphere damage

(3) Physiological effects of attention:

- a. <u>fMRI imaging of attention to location</u> (p. 649-650)
 - i. enhancement in detection and reaction time are selective for spatial location
 - ii. pattern of brain activity move retinotopically: different areas of the brain light up
 - depending on the location of the attended section
- b. <u>PET imaging of attention to features</u> (p.651)
 - i. Same-different task; both selective-attention and divided-attention
 - ii. Different areas of cortex had higher activity when different attributes of stimuli were being discriminated
 - iii. Numerous cortical areas appear to be affected by attention and the greatest attention effects are seen "late" rather than "early" areas in the visual system
- c. <u>Enhanced neuronal response in parietal cortex (p.652)</u>
 - i. a neuron in cortex responds to a target stimuli
 - ii. the response is enhanced if the target presented is followed by a saccade to the target
 - iii. enhancement is spatial selective b/c it is not seen if a saccade occurs in response to a stimulus not in the receptive field
- d. Receptive field change in Area V4: (p.654)
 - difference in ease of detection at the attended and unattended locations is based on the higher activity evoked by effective stimuli at the attended location = location specificity

Image removed due to copyright restrictions.

(4) How is attention directed?

- a. <u>Pulvinar nucleus</u>: structure in thalamus in which lesions result in abnormally show responses to stimuli on the contralateral side
- b. <u>Frontal eye fields (FEF)</u>: cortical area that is involved in the production of saccadic eye movements and may play a role in the guidance of attention
 - i. has motor fields = small areas in visual field
 - ii. if significant stimulation passes through FEF, then eyes rapidly make a saccade to the motor field of the stimulate neuron
 - iii. FEF stimulation mimics both the physiological and behavioral effects of attention

-- end of part I --