MIT OpenCourseWare http://ocw.mit.edu

9.01 Introduction to Neuroscience Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Chapter 9 and 10 Review – Vision

http://www.brown.edu/Courses/BN01/images/review/vision1.pdf http://www.brown.edu/Courses/BN01/images/review/vision2.pdf http://www.brown.edu/Courses/BN01/images/review/vision3.pdf

General

Properties of light (wavelength, color) Refraction

- bending of light that occurs when light rays travel from one medium to another
- from air to water, light rays bend toward a line that is perpendicular to the water surface

The Big Picture

```
Visual stimuli \rightarrow Eye (photoreceptors, bipolar cells, ganglion cells) \rightarrow optic nerve (chiasm, tract) \rightarrow LGN (thalamus) \rightarrow primary visual cortex \rightarrow dorsal and ventral visual areas
```

Eye

- Anatomy: iris, aqueous humor, ciliary muscles, vitreous humor, sclera, optic nerve, **retina**, **fovea** (highest acuity, only photoreceptors, no blood vessels), **cornea**, **lens**, extraocular muscles, optic disk (blind spot, where optic nerve exists retina, where blood vessels originate), macula, pupil
- Focusing an image on the retina requires:
 - Refraction by the cornea
 - Accommodation by the lens (important for focusing objects that are close)
 - Ciliary muscles contract (swell) \rightarrow ligaments loosen \rightarrow fatter lens, more refraction
 - Too fat a lens → myopia (nearsightedness), correct with concave eyeglass; too flat a lens → hyperopia (farsightedness), correct with convex eyeglass

• Retinal organization

- o Photoreceptors hyperpolarize to light; depolarize (release glutamate) when dark
 - Two types: rods and cones
 - fovea has cones, periphery has more rods
 - rods specialized for low light and are used at night
 - cones specialized for color, used during the day
 - higher photoreceptor-to-ganglion ratio in the periphery = less acuity
 - Transduction: photoreceptors have steady influx of sodium ions because cGMP keeps channels open; light activates opsin (or photopigment; called rhodopsin for rods); opsin activates G-protein which activates phosphodiesterase; phosphodiesterase breaks down cGMP, closing channels; cell hyperpolarizes
- Bipolar cells (retinal processing)
 - Antagonistic center-surround receptive fields (important for contrast)
 - OFF bipolar (responds to glutamate by depolarizing; gated cation channels)
 - ON bipolar (responds to glutamate by hyperpolarizing; G-protein-coupled receptors)
- Ganglion cells (retinal output)
 - Also center-surround; receive input from corresponding type of bipolar cell
 - Mainly responsive to differences in illumination
 - Types: P-type (small, 90%), M-type (large, 5%), nonM-nonP (5%)
 - Color opponency
- Other topics: horizontal and amacrine cells; light and dark adaptation; pupillary light reflex

Optic Nerve, Chiasm, Tract

- At chiasm, axons from nasal retinas **decussate**; result: left visual field information carried by right optic tract; right visual field information carried by left optic tract
- What parts of your vision is lost when:
 - Left optic nerve is cut? Input from left
 - Chiasm is cut down the middle? Peripheral vision
 - Left optic tract is cut? Right visual field
- Targets of projection: LGN (thalamus) to striate cortex, hypothalamus, superior colliculus.

Lateral Geniculate Nucleus

- Six layers labeled 1 through 6 (most ventral layer is 1)
- Retinal information separated by eye and ganglion cell type:
 - Ipsilateral axons synapse on LGN layers 2, 3, 5; contralateral axons on 1, 4, 6
 - Magnocellular LGN layers (1 and 2) receive input from M-type ganglion cells; parvocellular LGN layers (3-6) receive input from P-type; and koniocellular layers (lie just ventral to each numbered layer) receive input from non-M-non-P
- LGN neuron receptive fields almost identical to those of ganglion cells that innervate them
 - Magnocellular LGN neurons: large center-surround fields, insensitive to differences in wavelength, respond to stimulation with transient burst of action potentials
 - Parvocellular LGN neurons: small center-surround; many exhibit color opponency; sustained increase in frequency of action potentials
 - o Koniocellular LGN neurons: center-surround; light/dark or color opponency

Striate Cortex (V1, Area 17, primary visual cortex)

- Six layers (I through VI; IV divided into A, B, and C; IVC into α and β)
- Input
 - Most axons from LGN terminate in IVC cell type and eye separation maintained in IVC
 - Magnocellular LGN neurons project to IVCα; parvocellular to IVCβ
 - Right, left eye inputs separated via ocular dominance columns (autoradiography)
 - Koniocellular LGN axons project to II and III blob regions
- Processing
 - Radial connections (perpendicularly across all layers), horizontal connections (in one layer)
 - o Blobs (seen with cytochrome oxidase) run along II, III, V, VI
 - o IVC neurons project to II, III, IVB → some information integrated, processed; II and III receive binocular input
- Output
 - II, III, IVB \rightarrow cortical areas
 - \circ V \rightarrow superior colliculus, pons
 - VI \rightarrow back to LGN
- Receptive fields
 - o Binocularity
 - Orientation selectivity
 - Direction selectivity
 - Simple and complex receptive fields
 - o Blob receptive fields
- Other: cortical modules

Beyond Striate Cortex

- Dorsal stream ("where" pathway) motion processing
 - Area MT (V5) respond to movement in range of directions
 - Area MST additional movement sensitivity (linear, radial, circular motion)
- Ventral stream ("what" pathway) object shape, color processing
 - Area V4 shape and color perception (achromatopsia loss of color vision)
 - Area IT faces (**prosopagnosia** difficulty recognizing faces)

<u>Coding</u>

- Retinotopy (2D surface of retina is mapped onto 2D surface of LGN, striate)
 - Mapping of visual field often distorted (greater representation of fovea)
 - Discrete point of light can activate many cells in the retina, more in target structures, because of overlapping receptive fields; activity in cortex is broad distribution with peak at specific retinotopic location
 - Not literal map; no pictures in the brain
- Parallel processing
 - Left and right eyes
 - ON and OFF bipolar and ganglion cells
 - M- and P-type ganglion cells
 - Three channels in V1
 - Analysis of MOTION: magnocellular pathway = M-type ganglion cells → magnocellular layers of LGN → IVCα of cortex → IVB; receptive fields = binocular simple/complex, orientation selective, direction selective
 - Analysis of SHAPE/FORM: parvo-interblob pathway = P-type ganglion cells → parvocellular layers of LGN → IVCβ of cortex → II and III interblob regions; receptive fields = orientation selective, simple/complex
 - Analysis of COLOR: blob pathway = convergence of parvocellular, magnocellular, and koniocellular inputs; receptive fields = center-surround, color opponency monocular