Visual areas in the brain

Image removed for copyright reasons.

Image removed for copyright reasons.

What do you see?

Why?

Image removed for copyright reasons.

Image removed for copyright reasons.

Courtesy of Peter Schiller. Used with permission.

Visual Cortex

Outside view

Image removed for copyright reasons.
View from the middle

Flatten the brain

(like making a map out of a globe, Only worse)

Image removed for copyright reasons.

Do we really have center-surround receptive fields?

The Hermann Grid

Do we really have center-surround receptive fields?

The Hermann Grid

Do we really have center-surround receptive fields?

Umm...what is
happening here?

The stimulus

Light

Color

How do you see color?

Wavelength 1 produces a response of size \mathbb{X}

Wavelength 2 produces a response of sive X

The problem of "univariance"

Two wavelengths, one response.

So, we have a problem.

Here is a solution....add another cone type.

Two cones can give you color vision

$$
\mathbf{X} / \mathbf{Y}=\text { rect, } \mathbf{X} / \mathbf{Z}=\text { green }
$$ COMPARISONS ARE CRITICAL

Three cones give you Irichromacy

Three cones give you Irichromacy

Any light $=\mathrm{aL}+\mathrm{bM}+\mathrm{cS}$

Let's add some patches together

Wavelength (nm)

Let's take GREEN

Wavelength (nm)

And add RED

Wavelength (nm)

Red + Green $=(\mathbf{M} 1+\mathrm{M} 2) /(\mathrm{L} 1+\mathrm{L} 2)=1$

Compare that to YELLOW

Wavelength (nm)

Yellow = M3/L3 = 1

It follows that

RED

It follows that

plus

RED

GREEN

Yields Yellow
 $\mathrm{R}+\mathrm{G}$ and Y are
 METAMIERS

This is ADDITIVE color mixture

But what about color paint in kindergarten?

Blue paint

Yellow paint

Mixing paint is SUBTRACTIVE

The intersection of Blue paint and Yellow paint looks Green

Recall...Three cones give you Trichromacy

Suppose: if $\mathrm{S}=\mathrm{M}=\mathrm{L}$, then WHITE

Suppose that L gets tired?

What does $\mathrm{S}=\mathrm{M}>\mathrm{L}$ look like?

Pretty boring.......

Pretty

Pretty, not boring......

Try this

Vertical and Horizontal look the same?

-

 \section*{\footnotetext{

(a)
 \section*{\footnotetext{ \section*{(a)

 (ars)

 (ars)

 (a)

 (a)

 (a)

 (a)

 (a)

 (a)

 (2)

 (2)

 (as)

 (as)
 \square

 (arser

 (arser

 (arser

 $=$}

 $=$

Vertical and Horizontal look the same?

So, you found all these nice

 features...what is the problem?Which lines group together?

How about here? Why?

Which gray line is a likely continuation of the black

 line?

Which gray line is a likely continuation of the black line?

WHAT IS THIS?

Does this seem likely?

This seems more likely

"Good continuation"

One curved line or three?

You 'know' about occlusion

One curved line or three?

You 'know' about occlusion

Organized by columns or rows?

Now? Organized by columns or rows? Why?

Proximity

Now? Organized by columns or rows? Why?

Did Similarity trump Proximity?

Let's magnify the critical bit.

See that rectangle?

How about that rectangle?

How about that circle?

Not as good?

Edges are important

The visual system distinguishes "real" edges from shadows

Image removed for copyright reasons.

Remember: You want to know about the world, not your retina

COMy

Minimal shadow can give you faces

Images removed for copyright reasons.
Faces from University of Bielefeld Cognitive Robot project.

Depth Cues

Image removed for copyright reasons.

From 2D-3D

Occlusion

Is this likely?

Size

Texture

Relative position (height in field)

Here is why it works

You don't need to recognize the objects

Areal Perspective (haze)

The misty mountains far away

Linear Perspective

Vanishing point

Linear Perspective?

Image removed for copyright reasons.

Where is the vanishing point?

Linear Perspective?

These local bits don't add up

Linear Perspective?

These add up...ambiguously

5ffocloyys

Image removed for copyright reasons.

But where is the sun?

And let's not forget

Stereopsis,
Vergence,
and Motion parallax

