Lecture Four: Sensation and Signal Detection Theory

The abstract: This lecture will have three (or four) parts

1) We will discuss the general problem of using the senses to understand the world.
2) We will trace the visual pathway from eye to brain.
3) We will consider the most basic sorts of perceptual decisions in the context of Signal Detection Theory and we will discuss some of the broader applications of the theory.
4) We might get on to color vision....but history suggests that I may get side tracked long \square before that.

The outline:

POINT 1: THE BIG QUESTIONS: How do we see? How hard can that be to understand?

A three-part answer

Sensation - Getting data in to the system from the world
Attention - Selecting some of the data \square
Perception - Interpreting the data

POINT 2: From eye to brain

A lot of terms
Eye
(fill in the blanks \rightarrow) Aqueous Humor \square Pupil
Lens \square
Vitreous Humor \square
Retina \square
THE HUMAN EYE

Retina
from the back
Pigment epithelium
receptors
rods
cones
horizontal cells
bipolar cells
amacrine cells
ganglion cells

Figure removed for copyright reasons.

To the brain
optic nerve optic chiasm
lateral geniculate nucleus of the thalamus primary visual cortex extrastriate cortex

Brain region schematic removed for copyright reasons.

Figure by MIT OCW.

POINT THREE: Signal Detection Theory

Just about the simplest possible perceptual question: Did you see that spot of light in the dark?
What is an absolute threshold?
How sensitive are you to light?
Two tour de force papers
Hecht, S., Shlaer, S., \& Pirenne, M. H. (1942). Energy, quanta, and vision. J. General Physiology, 25, 819-840.

Sakitt, B. (1972). Counting every quantum. J. Physiology (London), 223(1), 131-150. \square
What would a neuron say?

Lecture 4 - Sensation
The stimulus

Did you see it? Let's do the experiment

Light

A couple of Signal Detection Theory websites

http://www.cns.nyu.edu/~david/sdt/sdt.html
http://wise.cgu.edu/sdt/overview.html
Has a cute applet to make ROCs make sense
More terminology
2AFC = 2-alternative forced-choice
Hits
True Negatives
Misses
False alarms
criterion
d^{\prime}
ROC (Receiver operating characteristic) curves
The ubiquity of SDT problems
From detection to discrimination
What is Weber's law?

IF we have time: SDT and prejudicial behavior
YOUR GROUP

ABOVE MAY BE YOUR GROUP OR ANOTHER
Get ignorant (That makes the distrbutions wider so they oyerlap more) Criterion

Now look at the consequences.

Color Vision? Well, if we get there, I will have to make another handout! \square

Questions to answer from Chapter Five: \square

P171 Can you describe Weber's Law and Fechner's law. Can you say a word about why they are of any interest?

P173 Signal detection theory will get discussed in lecture. It tends to confuse people. But, especially for the mathematically inclined, it is an interesting and important piece of the study of the senses.

P177 Can you describe the transduction of auditory stimuli from pressure waves in the air to a neural signal? You will want to be able to say something about the ossicles, cochlea, basilar membrane, \& hair cells.

P184 The structure of the eye will get covered in lecture and I won't repeat the terminology here.
P184 What does brightness contrast tell you about the way we see the world?
P189 What does lateral inhibition do for us?
P190 Color vision....oy, color vision. People ask more questions and get more confused about color vision than about any other topic in the course. So, here are the important points

1) Light is the portion of the EM spectrum containing wavelengths between about 400 and 700 nanometers (nm). Sunlight includes all of these wavelengths.
2) Physical objects differ in the percentages of different wavelengths reflected from their surfaces.
3) You have three types of cone photoreceptors. Each is broadly sensitive to a wide range of wavelengths. However, they differ in their sensitivities as shown in this picture.
4) This means that a single wavelength at a single \square intensity will produce three different responses: \square from the long- (L), medium- (M), and shortwavelength sensitive cones (S).
5) In fact, any combination of wavelengths, no \square matter how complicated, will produce three \square responses; one each from the $\mathrm{L}, \mathrm{M}, \& \mathrm{~S}$ cones. This is the heart of Trichromatic theory (=Young-Helmholtz theory - p192).
6) SO if two very different physical stimuli produce \square
 the same three responses, they will appear identical. They are metamers.
7) In determining the hue (p 190) of a surface or a light, it is the ratio of the $\mathrm{L}, \mathrm{M}, \& \mathrm{~S}$ cone responses that is important. Specifically, the L/M ratio tells you how red or green a surface appears and the $(\mathrm{L}+\mathrm{M}) / \mathrm{S}$ ratio tells you how yellow $(\mathrm{L}+\mathrm{M})$ or blue it is. This is the heart of opponent process theory (194). Trichromacy is step one. Opponent processes are step 2.
8) Color mixing confuses the pants off people but it is not that complicated. It is just about determining what stimulus reaches the eye.

Lecture 4 - Sensation
9) \square In additive color mixture, two or more lights are combined so that the union of the two sets of wavelengths reach the eye. So if light one is the set $\{400 \& 500 \mathrm{~nm}\}$ and light two is the set $\{600 \& 650 \mathrm{~nm}\}$, light one plus light two will be the set $\{400,500,600,650\}$.
10) In subtractive color mixture, filters remove light and you see the intersection of the filter properties. Paint, for example, is a filter. It sucks up one set of wavelengths and reflects back the remaining subset. Suppose you start with sunlight containing wavelengths from 400 to 700 nm . Now, let's pass that light through filter one. Let's suppose it pass wavelengths between 500 and 600 nm . Let's pass that remaining light through filter two, suppose it only passes light between 400 and 550 nm . The resulting subtraction will leave you with light between 500 and 550 nm - the only wavelengths passed by both filters.

Hope that helps.....
P197 and you should be able to define the term "receptive field".

Something to write about, \#4: Kitaoka's Snakes

Akiyoshi Kitaoka makes some of the best visual illusions in the world. You will find his snakes on the course web page in the KITAOKA'S SNAKES file. You can also visit his web page. It has all sorts of gorgeous things on it. http://www.ritsumei.ac.jp/~akitaoka/index-e.html

His explanation is posted in the same file on our webpage

You can also check
http://psych.upenn.edu/backuslab/vss/vss2004/backus2004.html

But no one really understands this effect.
If write about this, play with it. What makes it move? What makes it stop? Do you have a theory? \square

