6.874/... Recitation 1

Courtesy of an MIT Teaching Assistant.

Separate 6.874 recitation

- Teaching duties shared with Charlie +1 guest lecture
- Cover extra Al material in recitation
- Usually topics complementing lecture
- Extra problem set/exam problems
- 6.874 will start exams early
- Other recitation sections will review lecture

Reminders

- Pset 1 posted - due Feb 20 ${ }^{\text {th }}$ (no Al problem)
- Pset 2 posted soon - Due Mar 13 ${ }^{\text {th }}$
- Programming problem
- Python tutorial - Feb 10 ${ }^{\text {th }}$ (Monday) 4-5pm.
- Project interests due - Feb $11^{\text {th }}$
- Name, program, previous experience, interest in computational biology
- We'll post these next week for you to find groups for project
- Office hours posted soon

Today: Statistics Review/Multiple Testing

- Basic probability: motif representation/scanning
- Basic statistics
- Multiple hypothesis testing in context of motif scanning
- Bonferroni/Benjamini-Hochberg

Nature Biotechnology 27, 1135-1137 (2009)
doi:10.1038/nbt1209-1135
How does multiple testing correction work?
William S Noble ${ }^{1}$

Minimal biology review

- DNA is composed of 4 nucleotides: A, C, G, T
- DNA is transcribed into mRNA which is translated into protein
- A gene is a said to be expressed when it is transcribed
- Transcription factors (TF) are proteins that bind DNA and affect (promote/repress) gene expression
- A DNA sequence motif can be a sequence where specific TFs bind (others too - eg. splicing signals for mRNA)

DNA sequence motif representation

- Proteins (TFs) bind to motifs that are not fully specified
- Consensus sequence: TCGAACATATGTTCGA
- Collection of k-mers:
- TCGAACATATGTTCGA
- TCGAAAATATGTTCGA
- TAGAACATATCTTCGA ...
- Probabilistic model (PWM/PSSM)

Position Weight Matrix (PWM)

- Proteins (TFs) bind to motifs that are not fully specified
- Matrix of probabilities
- Each column (position) is a multinomial distribution over the nucleotides sums to 1
- Each column (position) is independent of other columns

	1	2	3	4
A	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
T	0	0.25	0.4	${ }^{2}{ }^{2}$
C	0	0.25	0.4	0

Aside: How to get a PWM?

- Motif finding on ChIP-seq data for a particular TF

TCTCATCCGGTGGGAATCACTGCCGCATTTGGAGCATAAACAATGGGGGG TACGAAGGACAAACACTTTAGAGGTAATGGAAACACAACCGGCGCATAAA ATACAAACGAAAGCGAGAAGCTCGCAGAAGCATGGGAGTGTAAATAAGTG
GGCGCCTCATTCTCGGTTTATAAGCCAAAACCTTGTCGAGGCAACTGTCA
TCAAATGATGCTAGCCGTCGGAATCTGGCGAGTGCATAAAAAGAGTCAAC

$S=G C A A$

	1	2	3	4
A	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
T	0	0.25	0.4	0
C	0	0.25	0.4	0

What do we do with PWM?

- Evaluate probability that a sequence was generated by the motif (does this TF bind this sequence?) $\quad \mathrm{S}=\mathrm{GCAA}$

$$
P(S \mid M)=0.4 \times 0.25 \times 0.1 \times 1.0=0.01
$$

	1	2	3	4
A	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
T	0	0.25	0.4	0
C	0	0.25	0.4	0

What do we do with PWM?

- Evaluate probability that a sequence was generated by the motif (does this TF bind this sequence?)

$$
\mathrm{S}=\mathrm{GCAA}
$$

$$
\mathrm{P}(\mathrm{~S} \mid \mathrm{M})=0.4 \times 0.25 \times 0.1 \times 1.0=0.01
$$

- Evaluate probability that a sequence was generated by background

$$
\mathrm{P}(\mathrm{~S} \mid \mathrm{B})=0.4 \times 0.4 \times 0.1 \times 0.1=0.0016
$$

	1	2	3	4
A	0.6	0.25	0.1	1
G	0.4	0.25	0.1	0
T	0	0.25	0.4	0
C	0	0.25	0.4	0

A	0.1
G	0.4
T	0.1
C	0.4

What do we do with PWM?

- Using Bayes' rule compute posterior probability that motif generated the sequence
- Assume prior probability of $\mathrm{P}(\mathrm{M})=.1$
- $\mathrm{P}(\mathrm{S} \mid \mathrm{M})=0.01 ; \mathrm{P}(\mathrm{S} \mid \mathrm{B})=.0016$ (from previous slide)

$$
\begin{aligned}
\mathrm{P}(\mathrm{M} \mid \mathrm{S})= & \frac{\mathrm{P}(\mathrm{~S} \mid \mathrm{M}) \times \mathrm{P}(\mathrm{M})}{\mathrm{P}(\mathrm{~S})}=\frac{\mathrm{P}(\mathrm{~S} \mid \mathrm{M}) \times \mathrm{P}(\mathrm{M})}{\mathrm{P}(\mathrm{~S} \mid \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{~S} \mid \mathrm{M}) \mathrm{P}(\mathrm{M})} \\
& =\frac{0.01 \times 0.1}{0.0016 \times 0.9+0.01 \times 0.1}=0.41
\end{aligned}
$$

Assigning significance

- We just scanned to test if one sequence was an instance of a motif
- 3 billion to go
- Like BLAST example in lecture - slide it along the genome
- Out of these 3 billion, how do we decide which ones we think are bound?

Nature Biotechnology example

D	Position	Str	Sequence	Score
19390631	+	TTGACCAGCAGGGGGCGCCG	26.30	
32420105	+	CTGGCCAGCAGAGGGCAGCA	26.30	
27910537	-	CGGTGCCCCCTGCTGGTCAG	26.18	
21968106	+	GTGACCACCAGGGGGCAGCA	25.81	
31409358	+	CGGGCCTCCAGGGGGCGCTC	25.56	
19129218	-	TGGCGCCACCTGCTGGTCAC	25.44	
21854623	+	CTGGCCAGCAGAGGGCAGCG	24.95	
12364895	+	CCCGCCAGCAGAGGGAGCCG	24.71	
13406383	+	CTAGCCACCAGGTGGCGGTG	24.71	
18613020	+	CCCGCCAGCAGAGGGAGCCG	24.71	
31980801	+	ACGCCCAGCAGGGGGCGCCG	24.71	
32909754	-	TGGCTCCCCCTGGCGGCCGG	24.71	
25683654	+	TCGGCCACTAGGGGCACTA	24.58	
31116990	-	GGCCGCCACCTTGTGGCCAG	24.58	
29615421	-	CTCTGCCCTCTGGTGGCTGC	24.46	
6024389	+	GTTGCCACCAGAGGGCACTA	24.46	
26610753	-	CACTGCCCTCTGCTGGCCCA	24.34	
26912791	-	GGGCGCCACCTGGCGGTCAC	24.34	
20446267	+	CTGCCCACCAGGGGGCAGCG	24.22	
21872506	-	TGGCGCCACCTGGCGGCACC	24.22	

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction
Work?." Nature Biotechnology 27, no. 12 (2009): 1135.

Null distribution

- How biologically meaningful are these scores?
- Assess probability that a particular score would occur by random chance
- How likely is it that 20 random nucleotides would match CTCF motif?

b	Position	Str	Sequence	Score
19390631	+	TTGACCAGCAGGGGGCGCCG	26.30	
32420105	+	CTGGCCAGCAGAGGGCAGCA	26.30	
27910537	-	CGGTGCCCCCTGCTGGTCAG	26.18	
21968106	+	GTGACCACCAGGGGGCAGCA	25.81	
31409358	+	CGGGCCTCCAGGGGGCGCTC	25.56	
19129218	-	TGGCGCCACCTGCTGGTCAC	25.44	
21854623	+	CTGGCCAGCAGAGGGCAGGG	24.95	
12364895	+	CCCGCCAGCAGAGGGAGCCG	24.71	
13406383	+	CTAGCCACCAGGTGGCGGTG	24.71	
18613020	+	CCCGCCAGCAGAGGGAGCCG	24.71	
31980801	+	ACGCCCAGCAGGGGGCGCCG	24.71	
32909754	-	TGGCTCCCCCTGGCGGCCGG	24.71	
25683654	+	TCGGCCACTAGGGGGCACTA	24.58	
31116990	-	GGCCGCCACCTTGTGGCCAG	24.58	
29615421	-	CTCTGCCCTCTGGTGGCTGC	24.46	
6024389	+	GTTGCCACCAGAGGGCACTA	24.46	
26610753	-	CACTGCCCTCTGCTGGCCCA	24.34	
26912791	-	GGGCGCCACCTGGCGGTCAC	24.34	
20446267	+	CTGCCCACCAGGGGGCAGCG	24.22	
21872506	-	TGGCGCCACCTGGCGGCAGC	24.22	

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." Nature Biotechnology 27, no. 12 (2009): 1135.

Null distribution

- Empirical null
- Shuffle bases of chr21 and rescan
- Any high scoring CTCF instances occur due to random chance, not biology
- Histogram of scores in empirical null distribution

b	Position	Str	Sequence	Score
19390631	+	TTGACCAGCAGGGGGCGCCG	26.30	
32420105	+	CTGGCCAGCAGAGGGCAGCA	26.30	
27910537	-	CGGTGCCCCCTGCTGGTCAG	26.18	
21968106	+	GTGACCACCAGGGGGCAGCA	25.81	
31409358	+	CGGGCCTCCAGGGGGCGCTC	25.56	
19129218	-	TGGCGCCACCTGCTGGTCAC	25.44	
21854623	+	CTGGCCAGCAGAGGGCAGGG	24.95	
12364895	+	CCGGCCAGCAGAGGGAGCCG	24.71	
13406383	+	CTAGCCACCAGGTGGCGGTG	24.71	
18613020	+	CCCGCCAGCAGAGGGAGCCG	24.71	
31980801	+	ACGCCCAGCAGGGGGCGCCG	24.71	
32909754	-	TGGCTCCCCCTGGCGGCCGG	24.71	
25683654	+	TCGGCCACTAGGGGGCACTA	24.58	
31116990	-	GGCCGCCACCTTGTGGCCAG	24.58	
29615421	-	CTCTGCCCTCTGGTGGCTGC	24.46	
6024389	+	GTTGCCACCAGAGGGCACTA	24.46	
26610753	-	CACTGCCCTCTGCTGGCCCA	24.34	
26912791	-	GGGCGCCACCTGGCGGTCAC	24.34	
20446267	+	CTGCCCACCAGGGGGCAGCG	24.22	
21872506	-	TGGCBCCACCTGGCGGCAGC	24.22	

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." Nature Biotechnology 27, no. 12 (2009): 1135.

P-value

- Probability that a score at least as large as the observed score would occur in the data drawn according to the null hypothesis
- $\mathrm{P}(\mathrm{S}>26.30)=\frac{1}{68 \text { million }}=1.5 \times 10^{-8}$
- $\mathrm{P}(\mathrm{S}>17)=\frac{35}{68 \text { million }}=5.5 \times 10^{-7}$
- Compare to confidence threshold
- $\alpha=0.01$ or 0.051
- Analytical null

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Noble, William S. '|How does Multiple Testing Correction Work?." Nature Biotechnology 27, no. 12 (2009): 1135.

Multiple testing problem

- P-values are only valid when a single score is computed - we are computing 68 million (or 3 billion!)
- Even though $\mathrm{P}(\mathrm{S}>17)=5.5 \times 10^{-7}$ is a small p-value, the large number of tests makes it more likely that a significant score could occur by random chance alone

Multiple testing example

- Coin is biased if in 10 flips it landed heads at least 9 times
- Null hypothesis that coin is fair
- P(fair coin would come up heads at least 9 out of 10 times) $=.0107$
- We want to test 100 coins using this method
- $P($ all 100 fair coins are identified as fair $)=$

Multiple testing example

- Coin is biased if in 10 flips it landed heads at least 9 times
- Null hypothesis that coin is fair
- P (fair coin would come up heads at least 9 out of 10 times $)=(10+1) \times(1 / 2)^{10}=0.0107$
- Very unlikely. We would reject null hypothesis - coin is unfair
- We want to test 100 coins using this method
- Given above probability, flipping 100 fair coins ten times each to see a pre-selected coin come up heads 9 or 10 times would still be very unlikely
- But, seeing any coin behave that way, without concern for which one, would be more likely than not
- $\mathrm{P}\left(\right.$ all 100 fair coins are identified as fair) $=(1-0.0107)^{100} \approx 0.34$
- Application of our single-test coin-fairness criterion to multiple comparisons would be more likely to falsely identify at least one fair coin as unfair

Bonferroni correction

- Simple method
- Makes each individual test more stringent
- Controls family-wise error rate (FWER)
- FWER is the probability of at least one false rejection
- In order to make the FWER equal to at most α, reject $H_{0 j}$ if $\mathrm{p}_{\mathrm{j}} \leq \frac{\alpha}{\mathrm{M}}$
- M is number of tests performed

Table 18.5 summarizes the theoretical outcomes of M hypothesis tests. Note that the family-wise error rate is $\operatorname{Pr}(V \geq 1)$. Here we instead focus

TABLE 18.5. Possible outcomes from M hypothesis tests. Note that V is the number of false-positive tests; the type-I error rate is $\mathrm{E}(V) / M_{0}$. The type-II error rate is $\mathrm{E}(T) / M_{1}$, and the power is $1-\mathrm{E}(T) / M_{1}$.

	Called Not Significant	Called Significant	Total
H_{0} True	U	V	M_{0}
H_{0} False	T	S	M_{1}
Total	$M-R$	R	M

on the false discovery rate

$$
\begin{equation*}
\mathrm{FDR}=\mathrm{E}(V / R) \tag{18.43}
\end{equation*}
$$

The Elements of Statistical Learning

Bonferroni correction applied to CTCF motif

- Can be useful if M is relatively small, but for large M it is too conservative - calls too few significant
- $\alpha=0.05$
- Bonferroni adjustment deems only $p<\frac{0.01}{68 \times 10^{6}}=1.5 \times 10^{-10}$ significant
- Lower than smallest observed p -value
- No scores are significant
- With Bonferroni, $\alpha=0.01$ means we can be 99% sure that NONE of the scores would be observed by chance when drawn according to the null hypothesis
- Relax - instead let's control the percentage of scores drawn according to the null

Controlling the False Discovery Rate (FDR)

- Expected proportion of tests that are incorrectly called significant, among those that are called significant

Table 18.5 summarizes the theoretical outcomes of M hypothesis tests. Note that the family-wise error rate is $\operatorname{Pr}(V \geq 1)$. Here we instead focus

TABLE 18.5. Possible outcomes from M hypothesis tests. Note that V is the number of false-positive tests; the type-I error rate is $\mathrm{E}(V) / M_{0}$. The type-II error rate is $\mathrm{E}(T) / M_{1}$, and the power is $1-\mathrm{E}(T) / M_{1}$.

	Called Not Significant	Called Significant	Total
H_{0} True	U	V	M_{0}
H_{0} False	T	S	M_{1}
Total	$M-R$	R	M

on the false discovery rate

$$
\begin{equation*}
\mathrm{FDR}=\mathrm{E}(V / R) . \tag{18.43}
\end{equation*}
$$

The Elements of Statistical Learning

Controlling the False Discovery Rate (FDR)

- \# null scores ≥ 17 (blue)
- $s_{\text {null } 1}=35$
- \# observed scores ≥ 17 (red)
- $s_{o b s 1}=519$
- $\frac{s_{\text {null }}}{s_{\text {obs } 1}}=6.7 \% 1$
- This computes FDRs from scores
- Use Benjamini-Hochberg to compute FDR from p-values

Courtesy of Macmillan Publishers Limited. Used with permission. ource: Noble, William S. "How does Multiple Testing Correction Work?." Nature Biotechnology 27, no. 12 (2009): 1135.

Benjamini-Hochberg (BH)

Algorithm 18.2 Benjamini-Hochberg (BH) Method.

1. Fix the false discovery rate α and let $p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(M)}$ denote the ordered p-values
2. Define

$$
\begin{equation*}
L=\max \left\{j: p_{(j)}<\alpha \cdot \frac{j}{M}\right\} . \tag{18.44}
\end{equation*}
$$

3. Reject all hypotheses $H_{0 j}$ for which $p_{j} \leq p_{(L)}$, the BH rejection threshold.

Benjamini-Hochberg (BH)

Genes ordered by p-value
The Elements of Statistical Learning
© Springer-Verlag. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Hastie, Trevor, Robert Tibshirani, et al. "The Elements of Statistical Learning."
New York: Springer-Verlag 2, no. 1 (2009).

Multiple testing problems in biology

- Massive scale of recent biology creates opportunities for spurious discoveries
- Scanning a genome for occurrences of transcription factor binding sites
- Searching a protein database for homologs of a query protein/BLAST search
- Identifying differentially expressed genes from microarray/RNA-seq
- Genome-wide association studies

Remember!

- Pset 1 posted - due Feb $20^{\text {th }}$ (no Al problem)
- Pset 2 posted soon - Due Mar 13 ${ }^{\text {th }}$
- Programming problem
- Python tutorial - Feb 10 ${ }^{\text {th }}$ (Monday) 4-5pm.
- Project interests due - Feb $11^{\text {th }}$
- Name, program, previous experience, interest in computational biology
- We'll post these next week for you to find groups for project
- Office hours posted soon

MIT OpenCourseWare
http://ocw.mit.edu
7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

