7.36 / 20.390 / 6.802 7.91 / 20.490 / 6.874 / HST.506 Lecture #3 C. Burge Feb. 11, 2014

Global Alignment of Protein Sequences (NW, SW, PAM, BLOSUM)

Topic 1 Info

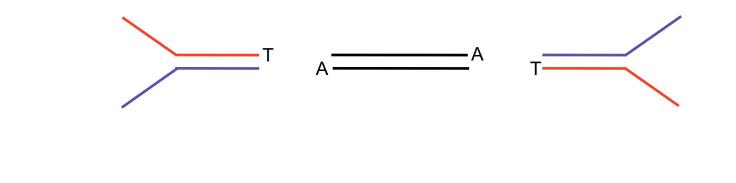
- Overview slide has blue background readings for upcoming lectures are listed at bottom of overview slide
- Review slides will have purple background
- Send your background/interests to TA for posting if reg'd for grad version
- PS1 is posted. BLAST tutorial may be helpful
- PS2 is posted. Look at the programming problem

Local Alignment (BLAST) and Statistics

- Sequencing
 - Conventional
 - 2nd generation
- Local Alignment:
 - a simple BLAST-like algorithm
 - Statistics of matching
 - Target frequencies and mismatch penalties for nucleotide alignments

Background for 2/7, 2/12 lectures: Z&B Ch. 4 & 5, BLAST tutorial

Questions: Chemistry / Library Prep


Dye terminator chemistry: dye is attached to base How to put different adapters on the two ends?

At least three ways:

1) RNA ligation _____OH р_____OH р_____

2) polyA tailing/polyTVN-ad2priming/circularization (PMID 19213877)

3) ligation of Y-shaped adapters

DNA Sequence Alignment I: Motivation

You are studying a recently discovered human non-coding RNA. You search it against the mouse genome using BLASTN (N for

nucleotide) and obtain the following alignment:

> Is this alignment significant? Is this likely to represent a homologous RNA?

> > How to find alignments?

DNA Sequence Alignment II

Identify high scoring segments whose score S exceeds a cutoff x using a **local alignment** algorithm (e.g., BLAST)

Scores follow an extreme value (aka Gumbel) distribution:

 $P(S > x) = 1 - \exp[-KMN e^{-\lambda x}]$

For sequences/databases of length M, N where K, λ are positive parameters that depend on the score matrix and the composition of the sequences being compared

Conditions: expected score is negative, but positive scores possible

Alternate algorithm

Karlin & Altschul 1990

Computational Efficiency

Measure efficiency in cpu run time and memory

O() = "big-oh" notation (computational Order of problem)

Consider the number of individual computations required to run algorithm as a function of the number of 'units' in the problem (e.g., base pairs, amino acid residues)

Analyze the asymptotic worst-case running time or sometimes just do the experiment and measure run time

If problem scales as square of the number of units it is

O(n²) "order n-squared"

DNA Sequence Alignment III

How is λ related to the score matrix?

 λ is the unique positive solution to the equation*:

$$\sum_{j,j} p_i r_j e^{\lambda S_{ij}} = 1$$

 p_i = freq. of nt i in query, r_j = freq. of nt j in subject s_{ij} = score for aligning an i,j pair

"Target frequencies"* : $q_{ij} = p_i r_j e^{\lambda S_{ij}}$

*Karlin & Altschul, 1990

DNA Sequence Alignment VI

Optimal mismatch penalty m for given target identity fraction r

m = ln(4(1-r)/3)/ln(4r)

Examples: r 0.75 0.95 0.99 m -1 -2 -3

r = expected fraction of identities in high-scoring BLAST hits

DNA Sequence Alignment VII

Meaning of mismatch penalty equation	Exam	ples:		
m = ln(4(1-r)/3)/ln(4r)	r m	0.75 -1	0.95 -2	0.99 -3
So why is m = -3 better for finding matches with 99% identit	y?			
Does it mean that you can only find 99% identical matches	with a mism	atch scor	e of -3?	J

Answer: No. It's also possible to find 99% matches with m = -1 or -2.

But m changes the match length required to achieve statistical significance

 $\boldsymbol{\lambda}$ is the unique positive solution to the equation

 $\sum_{i,j} p_i p_j e^{\lambda s_{ij}} = 1$ $p_i = \text{ frequency of nt } i, s_{ij} = \text{ score for aligning an } i, j \text{ pair}$ and $P(S > x) = 1 - exp[-KMN e^{-\lambda x}]$

If we change the mismatch score from -1 to -3, λ will increase. Therefore, the score required to achieve a given level of significance will decrease, i.e. shorter hits will be significant.

So why would you ever want to use m = -1?

Google: blastn

olastn blastp	Marine Billion Billion									
	blastx tblastn tblastx BLASTN programs search nucleotide databases using a nucleotide query. more Reset page Bookman									
Enter Query S	Sequence									
Enter accession i	number(s), gi(s), or FASTA sequence(s) 😣 Clear Query subrange 😣									
	From									
	То									
Or, upload file										
Job Title	Browse 😥									
oob mile	Enter a descriptive title for your BLAST search 😡									
Align two or m	ore sequences 9									
Choose Searc	ch Set									
Database	OHuman genomic + transcript OMouse genomic + transcript Others (nr etc.):									
	Nucleotide collection (nr/nt) :									
Organism	Enter organism name or id-completions will be suggested									
Optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.									
Exclude	Models (XM/XP) Uncultured/environmental sample sequences									
Optional Entrez Query										
Optional	Enter an Entrez query to limit search 😥									
-										
Program Sele	ction									
Optimize for	Highly similar sequences (megablast)									
	More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastn)									
	Choose a BLAST algorithm 😣									
BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences)									

BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences) Show results in a new window
Algorithm paramet	
General Param	eters
Max target sequences	100 + Select the maximum number of aligned sequences to display 🥹
Short queries	Automatically adjust parameters for short input sequences 😡
Expect threshold	10
Word size	28 💠 😡
Max matches in a query range	0
Scoring Parame	eters
Match/Mismatch Scores	1,-2 ‡ 😟
Gap Costs	Linear 😫 😡
Filters and Mas	king
Filter	Low complexity regions Species-specific repeats for: Homo sapiens (Human) +
Mask	Mask for lookup table only Mask lower case letters
BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences)

DNA Sequence Alignment VIII

Translating searches: translate in all possible reading frames search peptides against protein database (BLASTP)

 ${\tt ttgacctagatgatgatgtcgttcacttttactgagctacagaaaa}$

ttg|acc|tag|atg|aga|tgt|cgt|tca|ctt|tta|ctg|agc|tac|aga|aaa Μ С S S K L Т x R R L L L Y R t|tga|cct|aga|tga|gat|gtc|gtt|cac|ttt|tac|tga|gct|aca|gaa|aa x Ρ R X D V V H F Y X S Т Ε tt|gac|cta|gat|gag|atg|tcg|ttc|act|ttt|act|gag|cta|cag|aaa|a

D L D E M S F T F T E L Q K

Also consider reading frames on complementary DNA strand

DNA Sequence Alignment IX

Common flavors of BLAST:

<u>Program</u>	<u>Query</u>	<u>Database</u>
BLASTP	aa	aa
BLASTN	nt	nt
BLASTX	nt (⇒ aa)) aa
TBLASTN	aa	nt (⇒ aa)
TBLASTX	nt (⇒ aa) nt (\Rightarrow aa)

PsiBLAST

aa (aa msa) aa

msa = multiple sequence alignment

Which would be best for searching ESTs against a genome?

Global Alignment of Protein Sequences (NW, SW, PAM, BLOSUM)

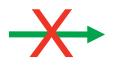
- Global sequence alignment (Needleman-Wunch-Sellers)
- Gapped local sequence alignment (Smith-Waterman)
- Substitution matrices for protein comparison

Background for today: Z&B Chapters 4,5 (esp. pp. 119-125)

Why align protein sequences?

Functional predictions based on identifying homologous proteins or protein ٠ domains

Assumes


Sequence similarity **_____** Similarity in function (and/or structure) implies

almost always true for similarity > 30%

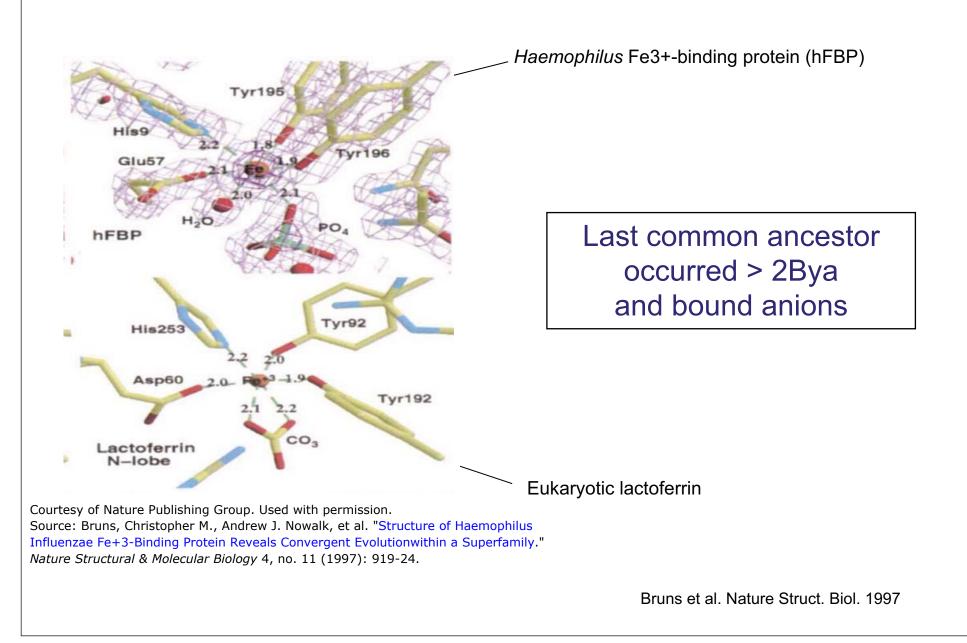
20-30% similarity is "the twilight zone"

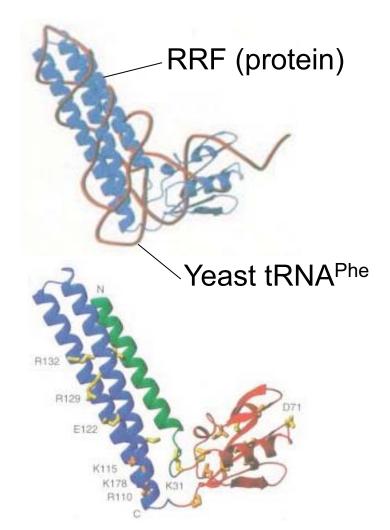
BUT: Function carried out at level of folded protein, i.e. 3-D structure Sequence conservation occurs at level of 1-D sequence

Converse is not true

Structural similarity (or even homology)

Convergent Evolution


Courtesy of Matthew Field. License: CC-BY.


© Dave Green at Butterfly Conservation. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Last common ancestor lived > 500 Mya and lacked wings (and probably legs and eyes)

Same idea for proteins - can result in similar structures with no significant similarity in sequence

Convergent Evolution of Fe3+-binding Proteins

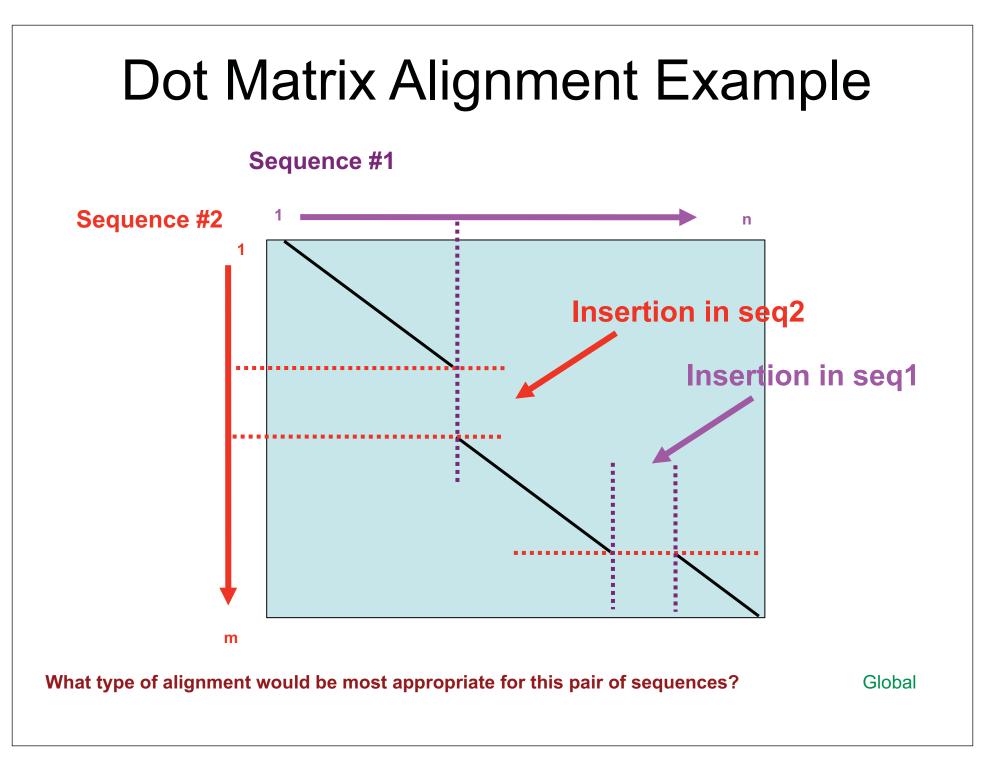
Convergent Evolution of a Protein and an RNA

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Selmer, Maria, Salam Al-Karadaghi, et al. "Crystal Structure of Thermotoga Maritima Ribosome Recycling Factor: A tRNA Mimic." *Science* 286, no. 5448 (1999): 2349-52.

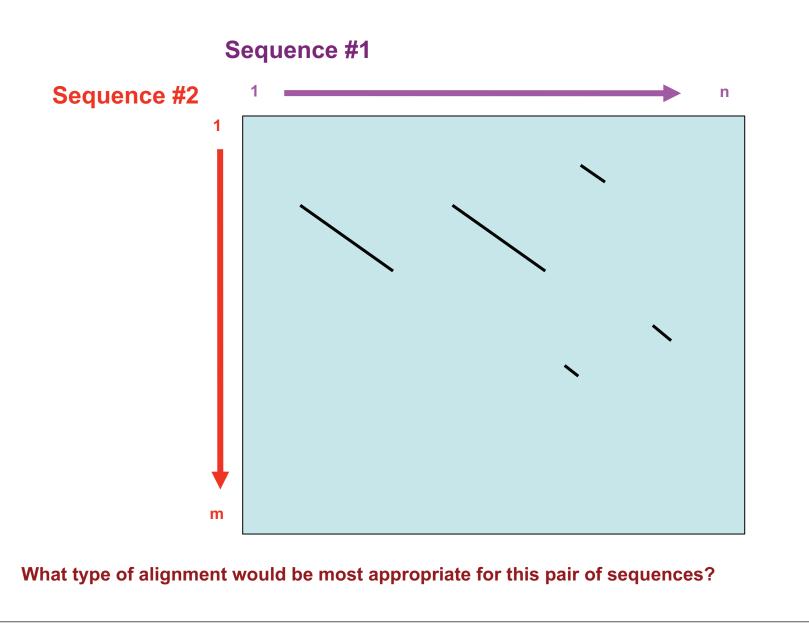
T. maritima ribosome recycling factor (RRF)

Unlikely to have ever had a common molecular ancestor

Selmer et al. Science 286. 2349 -. 1999


Types of Alignments

Scope:


- Local
- Global
- Semiglobal

Scoring system:

- Ungapped
- Gapped linear
 - affine

Dot Matrix Alignment Example 2

Local

Gaps (aka "Indels")

AKHFRGCVS AKKF--CVG

Linear Gap Penalty

 $-\gamma(n) = nA$, n= no. of gaps, A = gap penalty

"Affine" gap penalty

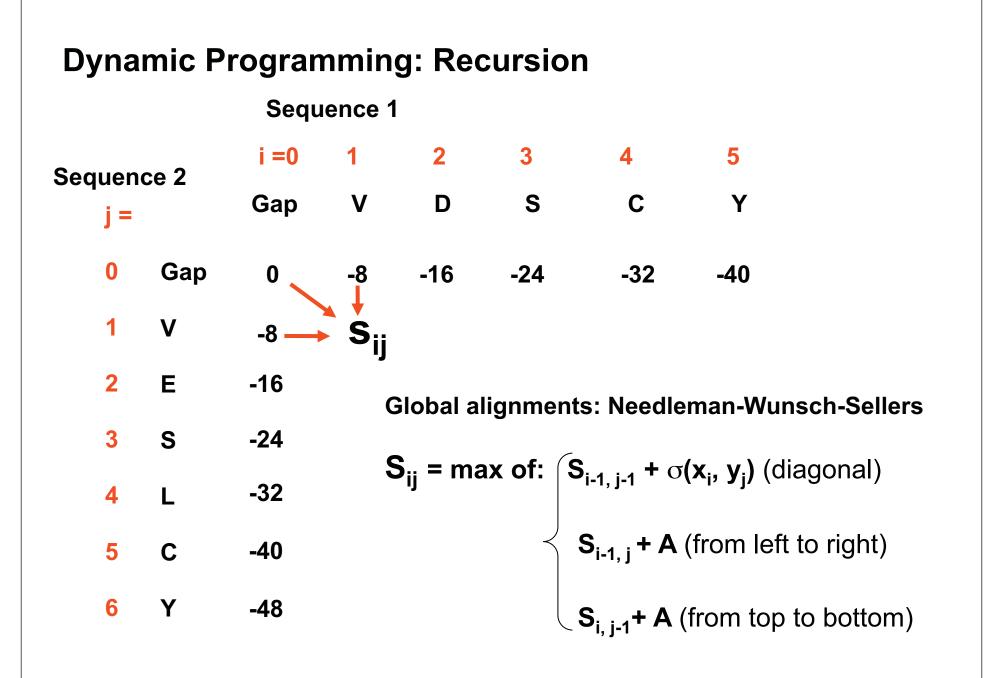
 $W_n = G + n\gamma$,

n = no. of gaps, γ = gap extension penalty, and G = gap opening penalty

Or:

 $W_n = G + (n-1)\gamma$

with alternative definition of gap opening penalty

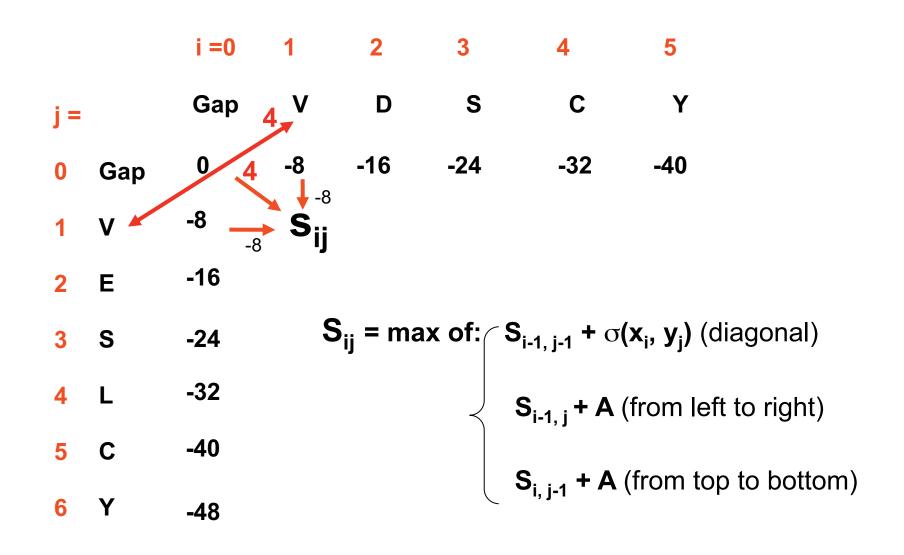

Obtain optimal global alignment using *Dynamic Programming:* First write one sequence across the top, and one down along the side Gap V D S С Υ 1 gap 2 gaps 0 Gap V 1 gap Ε 2 gaps S С Υ Note – linear gap penalty: $\gamma(n)=nA$, where A=gap penalty a negative number

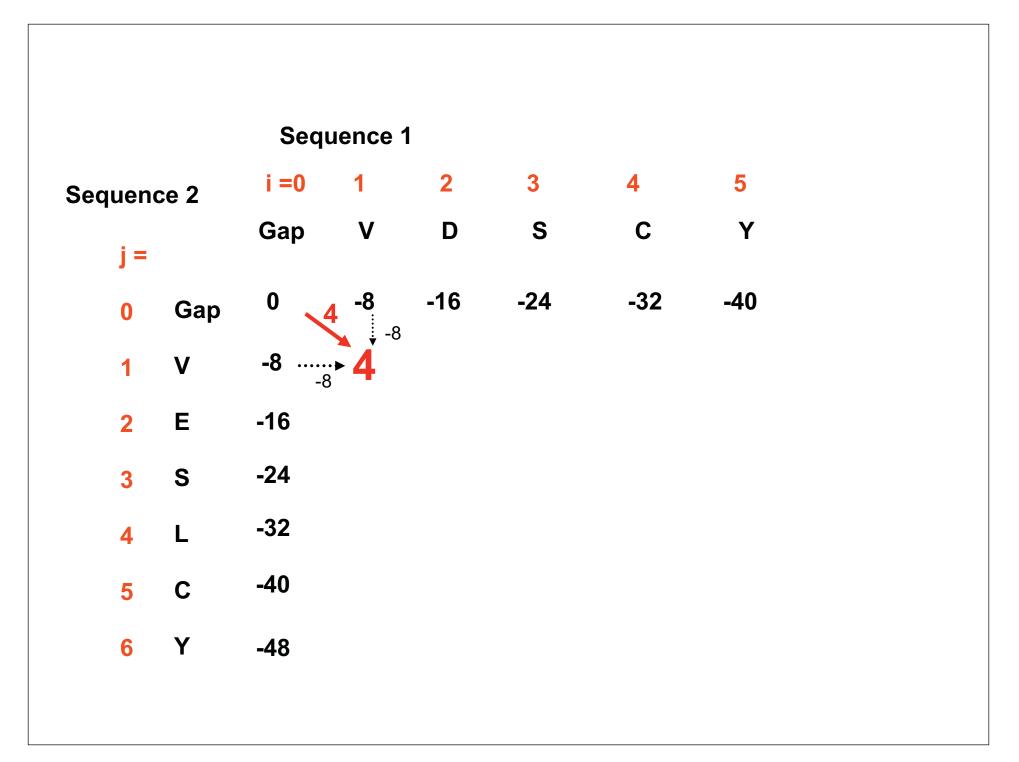
Dynamic Programming:

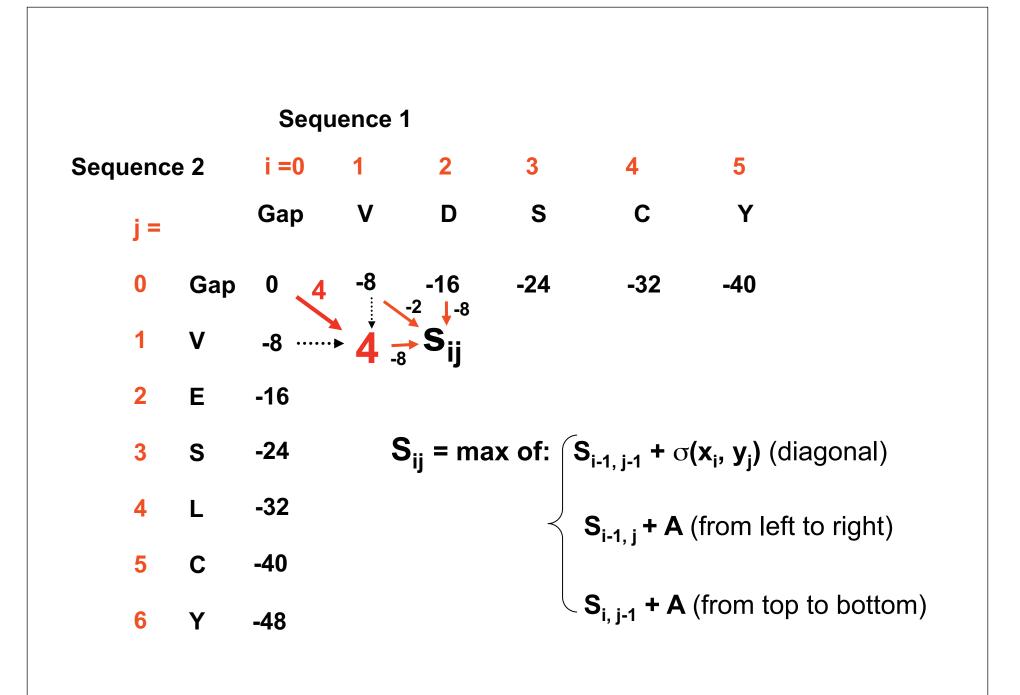
Initialize the alignment matrix

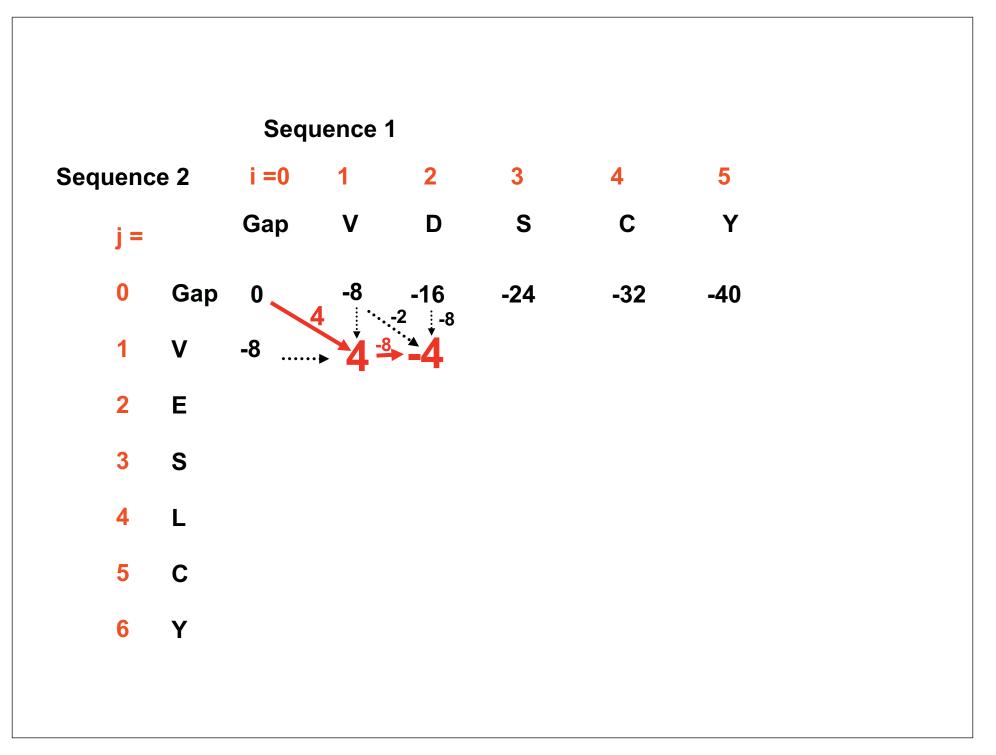
		i =0	1	2	3	4	5	
j =		Gap	V	D	S	С	Y	
0	Gap	0	-8	-16	-24	-32	-40	
1	V	-8 —	S _{ij}					
2	Е	-16	Sij =	score of	optimal	alignment	ending at	position i in
3	S	-24	seq 1		i seq 2. F	•	•	w S(i-1, j-1),
4	L	-32	Recu	rsive: So	• • • •	larger pro oblems	blem is bu	ilt up from
5	С	-40	Store	Sij and	how we	arrived at	•	atrix re generally
6	Y	-48			imization		0	5

What is the gap penalty in this example?

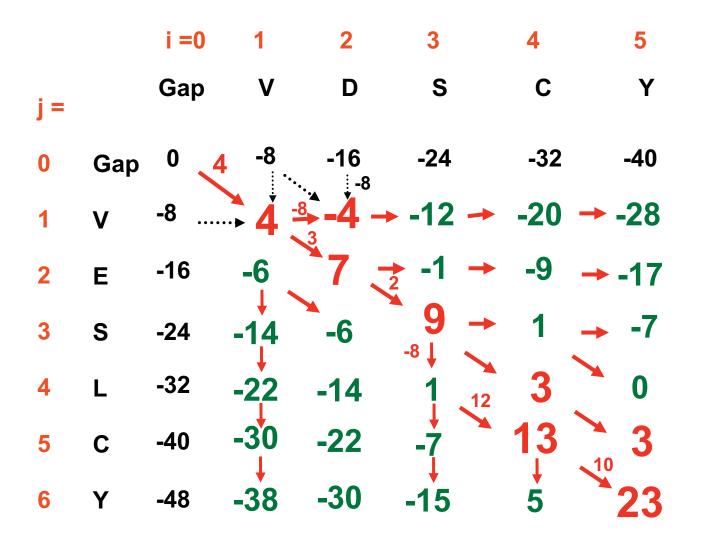

Computational complexity? O(mn) with linear gap penalty

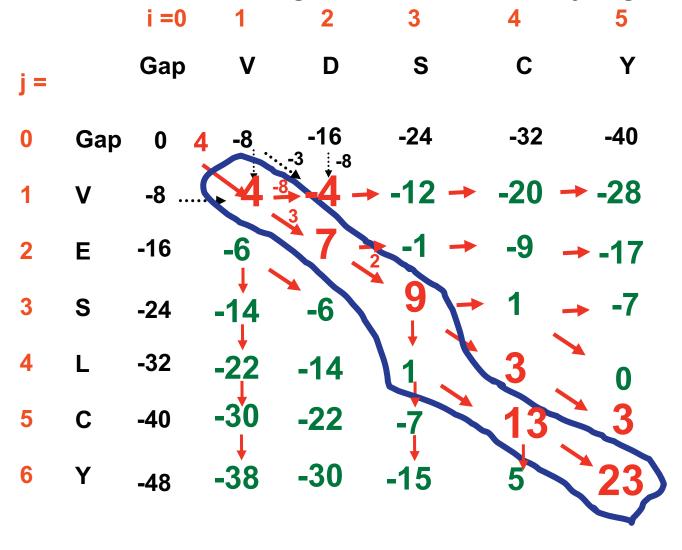

PAM250 Scoring Matrix

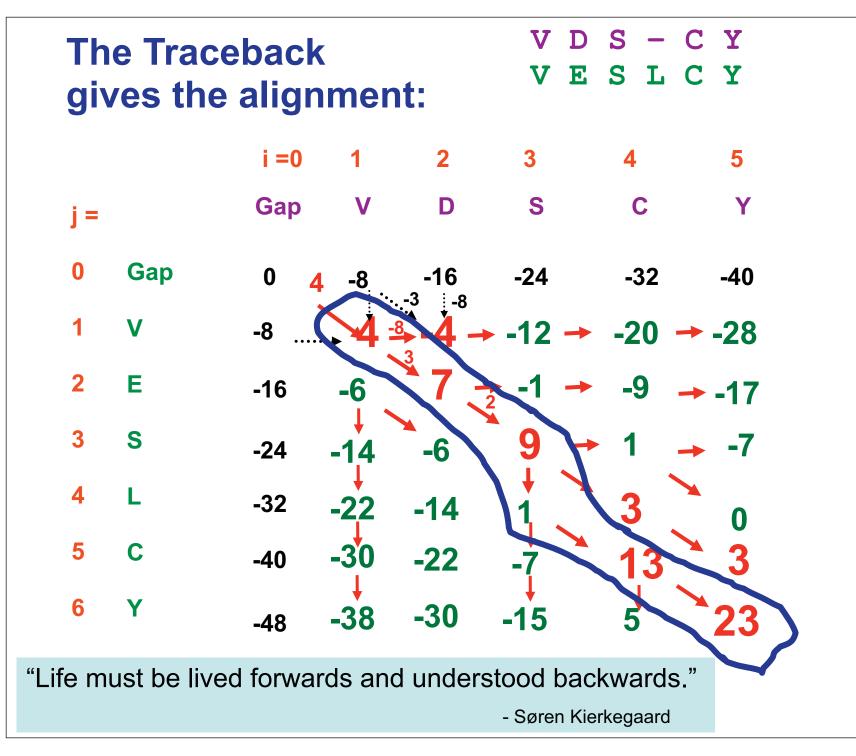

	C	S	т	P	A	G	N	D	E	Q	H	R	K	M	I	L	v	F	Y	W	
С	12																				С
S	Q	2												88888							S
Т	-2	1	3																		T
P	-3	1	Ø	6																	8
A	-2	1	1	1	2																A
G	-3	1	0	~1	3	9	1														Ğ
RÍ I	-4	1	D	-1	0	0	2														N
D	-5	Ø	Ø	-1	Ø	1	2	4													D
E	-5	0	0	-1	0	Ø	1	3	4												E
Q	-5	-1	-1	0	Ø	-1	1	2	2	4											Q
H	-3	-1	-1	0	-1	-2	2	1	1	3	6										H
R	-4	0	-1	0	-2	-3	0	-1	-1	1	2	6									R
K	-5	0	0	-1	-1	-2	1	0	0	1	0	3	5								K
М	-3	-2	-1	-2	-1	-3	-2	-3	-2	-1	-2	0	Q	6							M
Ι	-2	-1	0	-2	-1	-3	-2	-2	-2	-2	-2	-2	-2	2	5						I
C.	-6	-3	-2	-3	-2	-4	-3	-4	-3	-2	-2	-3	-3	4	2	6	~				L
V.	-2	-1	D.	-1	0	-1	-2	-2	-2	-2	-2	-2	-2	2	4	2	(4)				V
F	~4	-3	-3	~5	-4	~5	-4	-6	~5	-5	~2	-4	-5	0	1	2	-1	9			8
¥	0	-3	-3	-5	-3	-5	-2	-4	-4	-4	0	-4	-4	-2	-1	-1	-2	7	10		Y
W.	-8	-2	-9	-6	~6	-7	-4	-7	-7	~5	-3	2	-3	-4	~5	-2	-6	D	0	17	W
	C	S	т	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W	


© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dynamic Programming: filling in matrix




Completed Dynamic Programming Matrix



Keep track of scores AND how we got them \rightarrow "traceback matrix"

The Traceback:

After the alignment square is finished, start at the lower right and work backwards following the arrows to see how you got there...

Semiglobal Alignment

Allow sequences to overhang at either end without penalty -usually gives better alignments of homologous sequences of different lengths

Same algorithm as before except

- initialize edges of DP matrix $S_{i,0}$ and $S_{0,i}$ to 0
- instead of requiring traceback to begin at $S_{m,n}$, allow it to begin at highest score in bottom row or rightmost column

Gapped Local Alignment

Temple Smith and Michael Waterman, 1981 – modified Needleman-Wunsch-Sellers

Local alignment is the best scoring alignment of a substring in sequence x to a substring in sequence y.

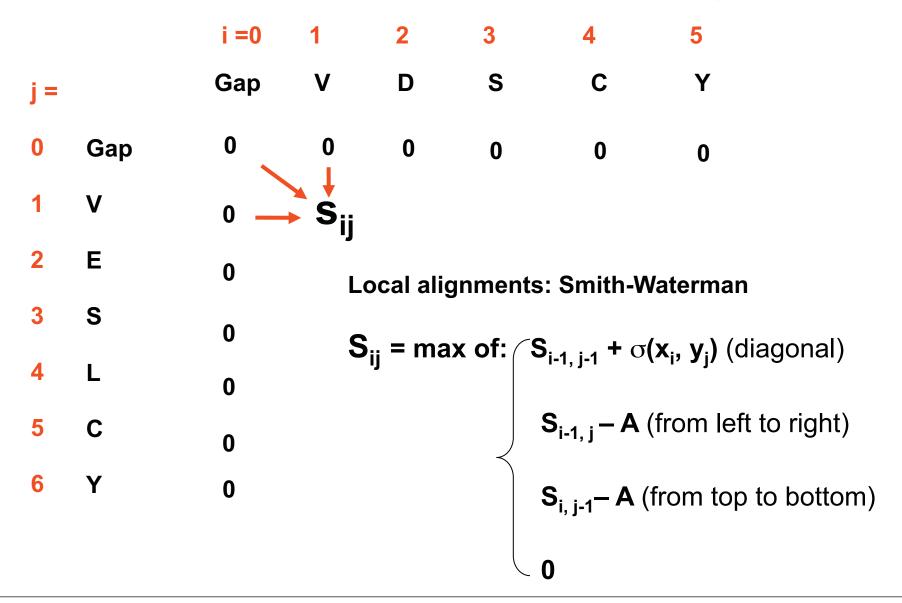
Key idea is not to force the alignment to extend to the ends of the sequences

Photograph of scientists removed due to copyright restrictions.

Smith-Waterman Local Alignment

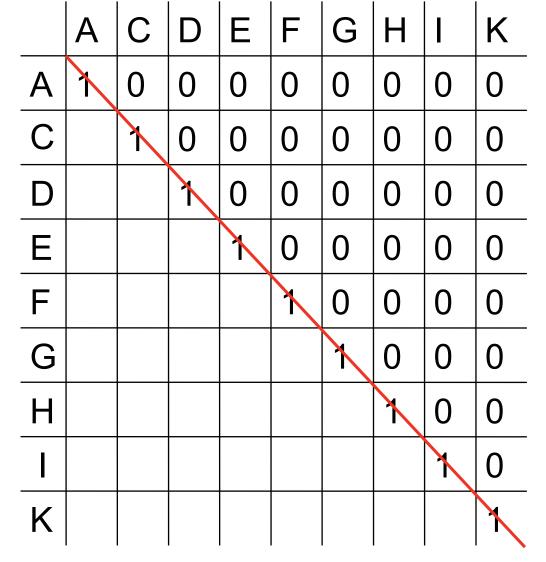
Again, use dynamic programming

Same basic scheme as before except


• similarity matrix MUST include negative values for mismatches

and

• when the value calculated for a position in the scoring matrix is negative, the value is set to zero - this terminates the alignment


Smith-Waterman:

Write one sequence across the top, and one down along the side

Need a metric of similarity between amino acid pairs

Simplest metric – identity matrix

OK for nucleic acids, but for proteins can do substantially better

What properties should an amino acid similarity matrix have?

Scoring system should favor matching identical or related amino acids and penalize for poor matches and for gaps

Need to know how often a particular amino acid pair is found in related proteins compared with its occurence by chance, and also how often gaps (insertions/deletions) are found in related proteins relative to dissimilar amino acid pairs

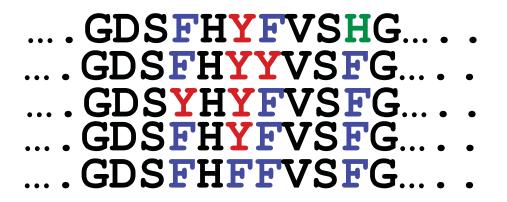
Scores and Evolution

Any alignment scoring system brings with it an implicit evolutionary model

Amino Acid Substitution Matrices

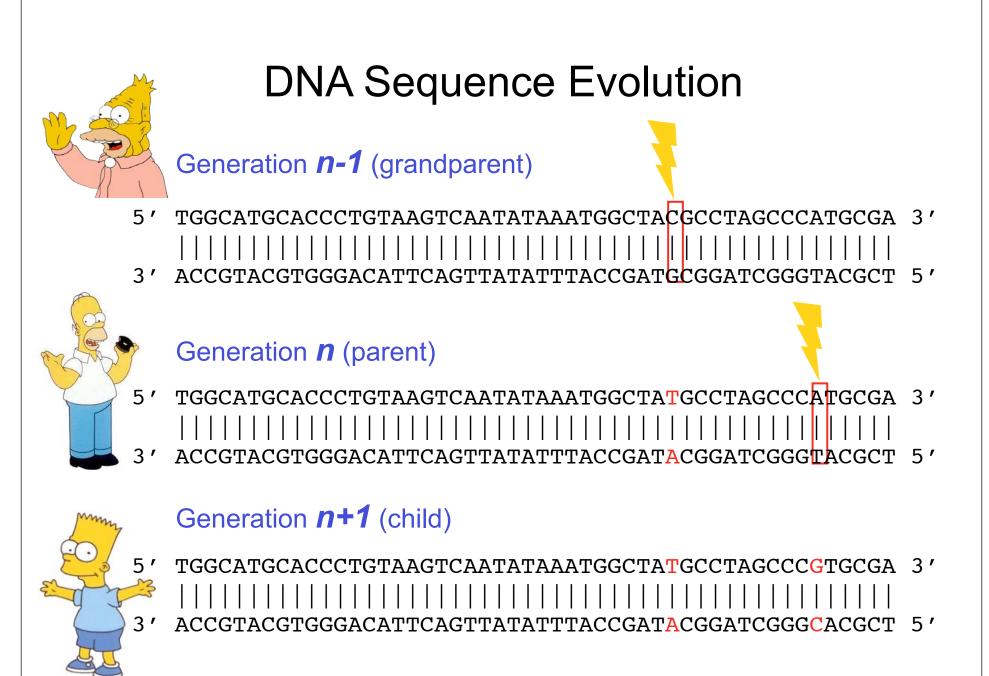
Margaret Dayhoff, 1978, PAM Matrices

Explicit evolutionary model Assumes symmetry: $A \rightarrow B = B \rightarrow A$ Assumes amino acid substitutions observed over short periods of time can be extrapolated to long periods of time


71 groups of protein sequences, 85% similar 1572 amino acid changes.

Functional proteins → mutations "accepted" by natural selection

PAM1 matrix means 1% divergence between proteins - i.e. 1 amino acid change per 100 residues. Some texts re-state this as the probability of each amino acid changing into another is ~ 1% and probability of not changing is ~99%


Construction of a Dayhoff Matrix: PAM1

Step 1: Measure pairwise substitution frequencies for each amino acid within families of related proteins that can be confidently aligned

900 Phe (F) remained F 100 Phe (F) \rightarrow 80 Tyr (Y), 3 Trp (W), 2 His (H).... Gives n_{ab} , i.e. n_{YF} =80 n_{WF} =3 $n_{indicates raw count of events}$

....in evolution

Images of The Simpsons © FOX. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Markov Model (aka Markov Chain)

Stochastic Process:

Classical Definition

• a sequence of Random Variables

a random process or

A discrete stochastic process $X_1, X_2, X_3, ...$ which has the Markov property:

$$P(X_{n+1} = j | X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_{n+1} = j | X_n = x_n)$$

(for all x_i , all j, all n)

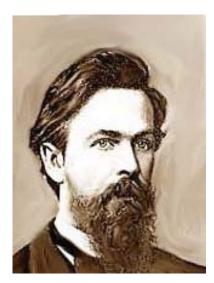


Image is in the public domain.

In words:

A random process which has the property that the future (next state) is conditionally independent of the past given the present (current state)

Andrey Markov, a Russian mathematician (1856 - 1922)

MIT OpenCourseWare http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.