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Central Topic:  

extracellular 
ligand 
‘cues’ 

‘signals’ 

behavior 
‘response’ 

(phenotype) 

Regulation of Mammalian Cell Behavior 
by Receptor-Mediated Signaling 

[‘execution’– 
transcription / translation, 

metabolism / synthesis, 
cytoskeleton / motors] 

Source: Hanahan, Douglas, and Robert A. Weinberg. "The Hallmarks of Cancer." Cell 100, no. 1 (2000): 57-70.
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Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.
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Objective: Learn how cell signaling network 
cell / tissue

operation – in multi-pathway manner -- differs phenotypic 
behaviorbetween normal and disease state 

or among various individuals 

environmental context altered 
behavior of 

cellular 
��machines�� 

and 
��circuits�� 

expression protein 
levels 

DNA dynamicmRNA sequence protein 
operationsgene  

variations /  
mutations  
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Example: Myriad -- and highly diverse -- genetic alterations 
(amplifications, deletions, mutations) across pancreatic 
tumors… (as well as in breast, colon, brain) 

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers
Revealed by Global Genomic Analyses." Science 321, no. 5897 (2008): 1801-6.

[[JJoonneess eett aall..,, SScciieennccee ((22000088)) ]] !!  4
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…but diverse mutations lead to dysregulation of a 
limited set of key pathways at protein level 

© American Association for the Advancement of Science. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers
Revealed by Global Genomic Analyses." Science 321, no. 5897 (2008): 1801-6.
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…but diverse mutations lead to dysregulation of a 
limited set of key pathways at protein level 
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Cell  
Signaling  
��Circuitry��  

Need to  
advance  

from  
Metaphor  

to  
Model  

© Scientific American Library. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Varmus, H., and R. A. Weinberg. "The Genetic Elements Governing Cancer: Tumor Suppressor
Genes." Genes and The Biology of Cancer (1993): 101-9.

Varmus & Weinberg, Genes & the Biology of Cancer [1993]  7
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Spectrum of Computational Modeling Methods  

SPECIFIED ABSTRACTED 

differential 
equations 

Boolean/fuzzy logic,  
decision trees  

Bayesian 
networks mutualmechanisms information 

logic regression, 
clusteringinfluences 

topology 

relationships 

��prior knowledge�� needed 
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Database Pathways Relevant No. Genes Format 
GeneGO 700+ 55 804 Table 

PANTHER 165 14 1,025 SBML 
CellMap (NetPATH) 20 12 625 BioPAX / SIF 

Reactome 1081 4 173 BioPAX / SIF 
NCI-PID 104 28 459 BioPAX / SIF 
KEGG 1000+ 8 564 -

SUMMARY 120 2,054 

Pathway / Interactome Databases  
hold substantial prior knowledge  

Pathway Databases (Nodes) 

Interactome Databases (Edges)  
Database Type No. Edges Graph type 
i2D v1.71 Protein-Protein (Exp) 11,327 Undirected 
STRING Integrated Text mining 35,033 Mixture 
GeneGo Curated 11,994 Directed, Signed 
Cell Map Curated 12,933 Mixture 
NCI-PID Curated 14,58 Mixture 

Reactome Curated 6,930 Mixture 
SUMMARY 68,067 Mixture 

© Respective copyright holders. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Pathway / Interactome Databases hold substantial ��prior knowledge��  
for integrative analysis of multi-pathway network effects;  
but, there is need to move forward from illustration  
to prediction  

EREG HBEGF 

ERBB4 

© source unknown. All rights reserved. This content is excluded from our Creative

Shortcomings: 

•  Typically diverse withNode Source 
respect to specificity and≥ 2  

GeneGo  context – i.e.,
KEGG 
NCI-PID cell type, genomic content,
NetPATH and/or environmentalPANTHER  
Reactome  conditions 

•  Do not readily permit 
��input-output�� calculation of 
network operating behavior, 
and thus difficult to relate to 

phenotype and/or 
interventions 

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Respective copyright holders. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Central Goal:  

Establish methodology for 
converting from qualitative 

cell pathway topology 
��maps�� to quantitatively 

computable network models 

Approach:  

Employ logic-based 
modeling framework, to 
train qualitative ��prior 
knowledge�� maps to 

quantitative empirical data 
for system context and 

multi-pathway comparisons 
of interest 
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More Detailed Insights from Stronger Modeling Analysis 
-- integrating empirical data with prior knowledge 

using network logic approach 

Network Logic ModelGeneric Pathway Map 
(e.g., Ingenuity) Boolean operators:

 nodes (=compounds), AND / OR / NOTsigned directed edges 
(activation +, inhibition -) 

AND 
A B C 

E 
F 

G 

S 

AND 

OR 

NOT 

NOT 

A B C 

E 

��!! 

F 

G��!! 

+ ++ 

+ + 

+ 
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Primary Hepatocytes HepG2 Huh7 Hep3B FocusFocus 

© source unknown. All rights reserved. This content is excluded from our Creative

Example Study: Comparative Hepatocytic Cell Signaling
Network Operation in Inflammation Context 

hepatocellular lineshepatocellular lines 

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 13

[7 ligands + 
control] 

X [7 inhibitors 
+ control] 

X 17 signals 
= ~ 1000 

measurements 
for each 

cell-type and 
time-point and 

replicate 

http://ocw.mit.edu/help/faq-fair-use/


 

 

 
  

 
  

Multi-Pathway Phosphoproteomic Data –  
primary human hepatocytes, HepG2 hepatocellular line  

LATE TRANSIENT 

NO RESPONSE SUSTAINED 

Time-points: 0, 30 min, 3 hrs 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

-- also cell death, proliferation index, and production of ~50 cytokines  
for each condition  

14
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Example Database  
Pathway Map  

from literature curation,  
for network responses  

to our cytokine and  
growth factor treatments  

from Ingenuity  
supplemented by  
some literature  

knowledge for key  
receptors  

-- 82 nodes,  
116 edges  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

15

http://ocw.mit.edu/help/faq-fair-use/


Choose Submap 

Process Data
Normalize between 0,1
Filter noise, saturation

STOP?

Compare 
experiment - simulation

Import Data

Define Pathway Map
from literature/Database

Perform 
Experiments

Analyze
resulting model

CellNetOptimizer

DataRail

YESNO

EGF TNF

Ikb

0

870

Evaluate model 
Sum deviations + Size

1

0

0

1

D
ev

ia
tio

n

Import Map

AND OR

EGF TNF

EGF TNF

Ikb

Ikb

TNFR EGFR

PI3K

AKT

IKKab

Ikb

TNF EGF

TNF EGF

IKKab

Ikb

TNFR EGFR

PI3K

AKTIKKab

Ikb

TNF EGF

OR

TNFR EGFR

PI3K

AKT

IKKab

TNF EGF

AND

TNF EGF

IKKab

Ikb

OR

Ikb

Process Map
Compress & Remove non-observables

X

Training Prior Pathway Map Knowledge on 
Context-Specific Empirical Signaling Data 

Create Boolean Scaffold

XX

© source unknown. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Automated Development of Logic Network Models  
from Fit of Generic Pathway Map to Experimental Data  

as an Optimization Problem  

Objective θ = θ f + α ⋅ θS 

Size of modelFit to data 

θ f = (Bikl 
M − Bikl 

E )2 
K =1 

M 

∑ 
l=1 

S 

∑ θS = ν k Pk 
k=1 

n 

∑ 
Relative  

importance  
Fit vs. Size 

Function 

∈ [0,1)∈ {0,1}∈ {0,1} 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

!  minimize Objective Function (θ) across model variants (P),  
!  trading off model-data error and model size;  

! αα ascertained by Pareto optimum for false-positive vs false- 
negative trade-offs  

!  obtain family of best-fit models (within 1% of Objective Function  
optimum)  
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Automated Development of Logic Network Models  
from Fit of Generic Pathway Map to Experimental Data  

as an Optimization Problem  

Genetic Algorithm 
1. Initialize a population of model variants (from Ingenuity  

scaffold or from random scaffolds)  
2. Evaluate objective function (model-vs-data error plus model-

size penalty) for each individual in the population 
3. Generate next generation of population using Elite Survival, 

Fitness Selection, Mutation, and Crossover 
4. Assess whether stop criterion is fulfilled, or iterate back to  

step 2  
5. Model pruning to reduce model size without detriment to  

model-vs-data error  
6. 100 runs for each value of model-size penalty αα 

18



 
 

Illustration for HepG2  
cell line  

– improvement in data fit 
from best-fit original 

scaffold model 
to best-fit trained model 

Training data fit to ~9% error, 
substantially improved from 
original scaffold model fit of 

>45% error 

19
© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see  http://ocw.mit.edu/help/faq-fair-use/.
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Illustration for HepG2  
cell line  

– consensus model from 
fit of empirical data to 
initial prior knowledge 

scaffold 
-- additional arcs needed 

to improve model fit, 
support in literature 
though not in prior 
knowledge scaffold 

-- arcs present in other cell 
line models but not in 

HepG2 

Courtesy of EMBO and Nature Publishing Group. License: CC-BY-NC-SA.
Source: Saez‐Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Discrete Logic Modelling as a Means to
Link Protein Signalling Networks with Functional Analysis of Mammalian Signal Transduction."
Molecular Systems Biology 5, no. 1 (2009).
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Model size is fairly insensitive to size penalty  

Objective function = Fit of data (MSE) + α Size 

200 
0.2 

160 

0 10 10 10 10 
Size penalty ! 

selected model-size penalty, 
for maximal predictive capability 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Substantial number of 
scaffold arcs not supported 

by hepatocyte data M
S
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0
0 -3-7 -5  -1  

21

http://ocw.mit.edu/help/faq-fair-use/


  

 

  

 

 
 

 
  

 
  

0% identifiability 

* 
* 

Models can only be partially identified  
-- thus model families are best outcome  

Frequency of Arc Distribution for Error Tolerance-Related 
(i.e., beyond exptl uncertainty) Model Families 

arc  
frequency  

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Trade-off between False Negatives and False Positives 

•	 Receiver Operating Characteristic (ROC) curve 
[ratio of true positives (1-false negatives) vs. false positives] 
for different values of the size penalty α 

•	 Optimal choice of size penalty (α=10-5) corresponds to most 
predictive model 

•	 Extended model (i.e., with added arcs) decreases false negatives 
but increases false positives 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Model Validation  
-- successful a priori 

predictions of new test data 

!  Used trained model to a 
priori predict effects of 
ligand combinations, 

additional inhibitors, and 
inhibitor combinations 

!  New test data predicted to 
within ~11% error, 

comparable to ~9% for 
original training data 

!  Can identify loci needing 
more detailed inquiry 

0 0.5 1 

Agree                            Disagree 

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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Extension to comparison among hepatocellular lines  
-- phosphoproteomic data  

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 25
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Demonstration of benefit of 
cell type-specific models 

Demonstration of capability to 
identify particular points 

inviting further study 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11.
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Best-Fit Boolean Logic  
Model Families  

for Primaries versus  
Lines  

• Arc width corresponds to 
proportion of best-fit models 
bearing it 
•  Black arcs – all models in 
both primaries and HCC 
lines 
• Blue arcs – most or all 
primary models 
• Red arcs – most or all HCC 
line models 
• Gray arcs deleted from 
original scaffold 
•  Dashed arc added to 
account for especially 
recalcitrant data 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 27
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Best-Fit Boolean Logic  
Model Families  

for Primaries versus  
Lines  

• ~90% of original scaffold 
interactions were found in at 
least one best-fit model 
across families for all cell 
types 
•  but only <10% were found 
both in most primary cell 
models and cell line models 
•  multiple pathways are 
identifiable as dysregulated 
from normal to tumor lines 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 28
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Model permits novel  
insights concerning  

drug actions  

Dashed arc added to fit data 
generated in presence of 
IKK inhibitor TPCA1 
– two potential 
explanations: 
• IKK activity suppresses 
STAT3 activity downstream 
of JAK2; 
or 
•  TPCA1 has off-target 
effect on JAK2 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 29
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Experimental validation of model prediction that putative  
IKK inhibitor TPCA1 hits JAK2 as an off-target substrate  
(whereas BMS-345541 does not)  

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11.

…perhaps 
providing an 
explanation for 
why TPCA1 has 
been found to be 
more efficacious 
for airway 
inflammation 
treatment than 
other IKK 
inhibitors 

30
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Best-Fit Boolean Logic  
Model Families  

-- comparison among  
HCC Lines  

•  cell-type specificity of 
network operation is thus 
explicitly characterized – 
not only contrasting 
primaries to tumor lines 
but also disparities 
between different tumor 
lines 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11.
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Cell types can be quantitatively clustered  
with respect to common edges  

-- reasonable similarity to transcriptomic result  

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 32
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Detailed Primary-vs-Lines Comparison 

• 8 edges are 
strongly disparate 
between primary 

hepatocytes and the 
HCC lines 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 33
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Detailed Primary-vs-Lines Comparison – insights gained 

•  Whereas EGFR leads to 
ERK activation in all cell 

types, HSP27 is 
significantly activated 

downstream of ERK only in 
primaries 

•  In the lines, HSP27 was 
activated more mildly and 
via p38 instead of via ERK 

(Literature: 
HCC tumor 

progression is 
associated with 

decreased HSP27 
activation --

despite HSP27 
over-expression) 

© American Association for Cancer Research. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 34
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Detailed Primary-vs-Lines Comparison – insights gained 

© American Association for Cancer Research. All rights reserved. This content is excluded from our

•  In primaries Ikb 
phosphorylation 

requires TNFa-NIK and 
activation of PI3K-JNK 

(via TGFa or Ins), 
whereas in lines only 
TNFa-NIK is required 

(Literature:  
HCC tumor  

progression is  
associated with  
looser control  

over NFkB-
mediated  

survival signals)  

Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
Between Normal and Transformed Hepatocytes Using Discrete Logical Models."
Cancer Research 71, no. 16 (2011): 5400-11. 35
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Detailed Primary-vs-Lines Comparison – insights gained 

© American Association for Cancer Research. All rights reserved. This content is excluded from our

•  GSK3 
phosphorylation by 

Akt (leading to 
nuclear activation of 
pro-mitotic factors) 

is induced by Insulin 
in lines but not in 

primaries 

(Literature: 
IRS1 is over-
expressed in 

HCC, potentially 
shifting Insulin-

induced 
signaling from 
IRS2-mediated 
metabolism to 
proliferation) 

Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Comparing Signaling Networks
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 These same three pathways have been implicated in  

combination kinase therapy for HCC 

IKK Akt p38 

© American Association for Cancer Research. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Pritchard, Justin R., Benjamin D. Cosgrove, et al. "Three-kinase Inhibitor Combination
Recreates Multipathway Effects of a Geldanamycin Analogue on Hepatocellular Carcinoma Cell
Death." Molecular Cancer Therapeutics 8, no. 8 (2009): 2183-92.

37

http://ocw.mit.edu/help/faq-fair-use/
http://dx.doi.org/10.1158/1535-7163.MCT-08-1203
http://dx.doi.org/10.1158/1535-7163.MCT-08-1203
http://dx.doi.org/10.1158/1535-7163.MCT-08-1203


 

  

��Constrained Fuzzy 
Logic�� Framework 

allows Analog Model 
rather than Digital 
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HepG2 Constrained Fuzzy Logic Network Model 
(again consensus family)

Extracellular  
cues  

Protein  
signals  

Courtesy of Morris et al. License: CC-BY.
Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data
with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli."
PLoS Computational Biology 7, no. 3 (2011): e1001099.
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one standard deviation  

of predictions  
across all conditions  
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Model family precision generally presages accuracy 

Courtesy of Morris et al. License: CC-BY.
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