LOGIC MODELING OF

CELL SIGNALING NETWORKS

J Saez-Rodriguez – <u>Molecular Systems Biology</u> 5: 331 [2009]

MK Morris – <u>Biochemistry</u> 49: 3216 [2010]

J Saez-Rodriguez – <u>Cancer Research</u> 71: 5400 [2011]

MK Morris – PLoS Computational Biology 7: e1001099 [2011]

Central Topic: Regulation of Mammalian Cell Behavior by Receptor-Mediated Signaling

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Hanahan, Douglas, and Robert A. Weinberg. "The Hallmarks of Cancer." Cell 100, no. 1 (2000): 57-70. Objective: Learn how cell signaling network operation – in multi-pathway manner -- differs between normal and disease state or among various individuals

cell / tissue

phenotypic

behavior

Example: Myriad -- and highly diverse -- genetic alterations (amplifications, deletions, mutations) across pancreatic tumors... (as well as in breast, colon, brain)

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses." *Science* 321, no. 5897 (2008): 1801-6.

...but diverse mutations lead to dysregulation of a limited set of key pathways at protein level

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses." *Science* 321, no. 5897 (2008): 1801-6.

[Jones et al., Science (2008)]

...but diverse mutations lead to dysregulation of a limited set of key pathways at protein level

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Jones, Siân, Xiaosong Zhang, et al. "Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses." *Science* 321, no. 5897 (2008): 1801-6.

Cell Signaling "Circuitry"

> Need to advance from <u>Metaphor</u> to <u>Model</u>

© Scientific American Library. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Varmus, H., and R. A. Weinberg. "The Genetic Elements Governing Cancer: Tumor Suppressor Genes." *Genes and The Biology of Cancer* (1993): 101-9.

Varmus & Weinberg, Genes & the Biology of Cancer [1993]

Spectrum of Computational Modeling Methods

SPECIFIED

ABSTRACTED

'prior knowledge' needed

Pathway / Interactome Databases hold substantial prior knowledge

Palliway Dalabases (Noues)				
Database	Pathways	Relevant	No. Genes	Format
GeneGO	700+	55	804	Table
PANTHER	165	14	1,025	SBML
CellMap (NetPATH)	20	12	625	BioPAX / SIF
Reactome	1081	4	173	BioPAX / SIF
NCI-PID	104	28	459	BioPAX / SIF
KEGG	1000+	8	564	-
SUMMARY		120	2,054	

Dathway Databaaaa (Nadaa)

Interactome Databases (Edges)

Database	Туре	No. Edges	Graph type	
i2D v1.71	Protein-Protein (Exp)	11,327	Undirected	
STRING	Integrated Text mining	35,033	Mixture	
GeneGo	Curated	11,994	Directed, Signed	
Cell Map	Curated	12,933	Mixture	
NCI-PID	Curated	14,58	Mixture	
Reactome	Curated	6,930	Mixture	
SUMMARY		68,067	Mixture	

INTEROLOGOUS INTERACTION DATABASE

© Respective copyright holders. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

Pathway / Interactome Databases hold substantial 'prior knowledge' for integrative analysis of multi-pathway network effects; but, there is need to move forward from illustration to prediction

Shortcomings:

 Typically diverse with respect to specificity and context – i.e., cell type, genomic content, and/or environmental conditions

• Do not readily permit 'input-output' calculation of network operating behavior, and thus difficult to relate to phenotype and/or interventions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

INTEROLOGOUS INTERACTION DATABASE

PathwayInteractionDatabas

NetPath

© Respective copyright holders. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

<u>Central Goal:</u>

Establish methodology for converting from qualitative cell pathway topology 'maps' to quantitatively computable network models

Approach:

Employ logic-based modeling framework, to train qualitative 'prior knowledge' maps to quantitative empirical data for system context and multi-pathway comparisons of interest

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

More Detailed Insights from Stronger Modeling Analysis -- integrating empirical data with prior knowledge using network logic approach

Generic Pathway Map (e.g., Ingenuity) nodes (=compounds), signed directed edges (activation +, inhibition -)

Boolean operators:

AND / OR / NOT

Example Study: Comparative Hepatocytic Cell Signaling Network Operation in Inflammation Context

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Multi-Pathway Phosphoproteomic Data – primary human hepatocytes, HepG2 hepatocellular line

Time-points: 0, 30 min, 3 hrs

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

-- also cell death, proliferation index, and production of ~50 cytokines for each condition

Example Database Pathway Map from literature curation, for network responses to our cytokine and growth factor treatments

> from *Ingenuity* supplemented by some literature knowledge for key receptors -- 82 nodes, 116 edges

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Training Prior Pathway Map Knowledge on Context-Specific Empirical Signaling Data

Automated Development of Logic Network Models from Fit of Generic Pathway Map to Experimental Data as an Optimization Problem

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- minimize Objective Function (θ) across model variants (P),
 trading off model-data error and model size;
 α ascertained by Pareto optimum for false-positive vs false-negative trade-offs
- obtain family of best-fit models (within 1% of Objective Function optimum)

Automated Development of Logic Network Models from Fit of Generic Pathway Map to Experimental Data as an Optimization Problem

Genetic Algorithm

- 1. Initialize a population of model variants (from Ingenuity scaffold or from random scaffolds)
- 2. Evaluate objective function (model-vs-data error plus modelsize penalty) for each individual in the population
- 3. Generate next generation of population using Elite Survival, Fitness Selection, Mutation, and Crossover
- 4. Assess whether stop criterion is fulfilled, or iterate back to step 2
- 5. Model pruning to reduce model size without detriment to model-vs-data error
- 6. 100 runs for each value of model-size penalty $\boldsymbol{\alpha}$

Illustration for HepG2 cell line – improvement in data fit from best-fit original scaffold model to best-fit trained model

Training data fit to ~9% error, substantially improved from original scaffold model fit of >45% error

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Illustration for HepG2 cell line

- consensus model from fit of empirical data to initial prior knowledge scaffold
- -- additional arcs needed to improve model fit, support in literature though not in prior knowledge scaffold -- arcs present in other cell line models but not in HepG2

Courtesy of EMBO and Nature Publishing Group. License: CC-BY-NC-SA. Source: Saez-Rodriguez, Julio, Leonidas G. Alexopoulos, et al. "Discrete Logic Modelling as a Means to Link Protein Signalling Networks with Functional Analysis of Mammalian Signal Transduction." *Molecular Systems Biology* 5, no. 1 (2009).

Model size is fairly insensitive to size penalty

Objective function = Fit of data (MSE) + α Size

for maximal predictive capability

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Models can only be partially identified -- thus model families are best outcome

Frequency of Arc Distribution for Error Tolerance-Related (*i.e.*, beyond exptl uncertainty) Model Families

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Trade-off between False Negatives and False Positives

- Receiver Operating Characteristic (ROC) curve [ratio of true positives (1-false negatives) vs. false positives] for different values of the size penalty α
- Optimal choice of size penalty (α=10⁻⁵) corresponds to most predictive model
- Extended model (*i.e.*, with added arcs) decreases false negatives but increases false positives

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Experimental design

Model Validation -- successful a priori predictions of new test data

- Used trained model to a priori predict effects of ligand combinations, additional inhibitors, and inhibitor combinations
- New test data predicted to within ~11% error, comparable to ~9% for original training data
- Can identify loci needing more detailed inquiry

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Extension to comparison among hepatocellular lines -- phosphoproteomic data

Number of cell lines with significant signal

icant signal None 1/4 2/4 3/4 4/4

Best-Fit Boolean Logic Model Families for Primaries versus Lines

- Arc width corresponds to proportion of best-fit models bearing it
- Black arcs all models in both primaries and HCC lines
- Blue arcs most or all primary models
- Red arcs most or all HCC line models
- Gray arcs deleted from original scaffold
- Dashed arc added to account for especially recalcitrant data

Best-Fit Boolean Logic Model Families for Primaries versus Lines

 ~90% of original scaffold interactions were found in at least one best-fit model across families for all cell types

- but only <10% were found both in most primary cell models and cell line models
- multiple pathways are identifiable as dysregulated from normal to tumor lines

Model permits novel insights concerning drug actions

- Dashed arc added to fit data generated in presence of IKK inhibitor TPCA1 – two potential explanations:
- IKK activity suppresses STAT3 activity downstream of JAK2;
- or
- TPCA1 has off-target effect on JAK2

Experimental validation of model prediction that putative IKK inhibitor TPCA1 hits JAK2 as an off-target substrate

(whereas BMS-345541 does not)

...perhaps providing an explanation for why TPCA1 has been found to be more efficacious for airway inflammation treatment than other IKK inhibitors

Best-Fit Boolean Logic Model Families -- comparison among HCC Lines

 cell-type specificity of network operation is thus explicitly characterized – not only contrasting primaries to tumor lines but also disparities between different tumor lines

Detailed Primary-vs-Lines Comparison

Detailed Primary-vs-Lines Comparison – insights gained

Detailed Primary-vs-Lines Comparison – insights gained

Detailed Primary-vs-Lines Comparison – insights gained

 GSK3 phosphorylation by Akt (leading to nuclear activation of pro-mitotic factors) is induced by Insulin in lines but not in primaries

> (Literature: IRS1 is overexpressed in HCC, potentially shifting Insulininduced signaling from IRS2-mediated metabolism to proliferation)

These same three pathways have been implicated in <u>combination</u> kinase therapy for HCC

Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death

© American Association for Cancer Research. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Pritchard, Justin R., Benjamin D. Cosgrove, et al. "Three-kinase Inhibitor Combination Recreates Multipathway Effects of a Geldanamycin Analogue on Hepatocellular Carcinoma Cell Death." *Molecular Cancer Therapeutics* 8, no. 8 (2009): 2183-92.

1-038

4.0

Courtesy of Morris et al. License: CC-BY.

Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli." *PLoS Computational Biology* 7, no. 3 (2011): e1001099.

HepG2 Constrained Fuzzy Logic Network Model (again consensus family)

Courtesy of Morris et al. License: CC-BY.

Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli." *PLoS Computational Biology* 7, no. 3 (2011): e1001099.

Intensity of arc = likelihood of connection

Numerical descriptor = upstream-downstream effect strength

***** = new arcs not identified by Boolean model

Example Results for Quantitative Cell Circuit Logic -- downstream 'child' node versus upstream 'parent' nodes

Red points: experimental values Gray points: averaged-model predictions Gold points: individual model predictions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Morris et al. License: CC-BY.

Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses toInflammatory Stimuli." *PLoS Computational Biology* 7, no. 3 (2011): e1001099.

New test data fell within one standard deviation of predictions across all conditions

Model family precision generally presages accuracy

Courtesy of Morris et al. License: CC-BY.

Source: Morris, Melody K., Julio Saez-Rodriguez, et al. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli." *PLoS Computational Biology* 7, no. 3 (2011): e1001099.

MIT OpenCourseWare http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.