- L14 - Predicting protein interactions
- L15 - Gene Regulatory Networks
- L16 - Protein Interaction Networks
- L17 - Computable Network Models

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
- Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Predictions

Last time: protein structure

WW domain $1137 \mu \mathrm{~s}$ 2F21 $1.2 \AA 21 \mu \mathrm{~s}$

Homeodomain $327 \mu \mathrm{~s}$ 2P6J 3.6 A $3.1 \mu \mathrm{~s}$

2WXC 4.8 A $29 \mu \mathrm{~s}$

2A3D 3.1A $27 \mu \mathrm{~s}$

A-repressor $643 \mu \mathrm{~s}$ 1LMB 1.8 A $49 \mu \mathrm{~s}$
© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lindorff-Larsen, Kresten, Stefano Piana, et al. "How Fast-folding Proteins Fold." Science 334, no. 6055 (2011): 517-20.

Now: protein interactions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Bayesian Networks

Predict unknown variables from observations

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.

A "natural" way to think about biological networks.

Bayesian Networks

- Bayesian Networks are a tool for reasoning with probabilities
- Consist of a graph (network) and a set of probabilities
- These can be "learned" from the data

Graphical Structure Expresses our Beliefs

How do we obtain a BN?

- Two problems:
- learning graph structure
- NP-complete
- approximation algorithms
- probability distributions

Goal

- What other data could help?

(C) American Association for the Advancement of Science. All rights reserved.

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.

Properties of real interactions: correlated expression Expression Profile Reliability (EPR)

© American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Deane, Charlotte M., Łukasz Salwiński, et al. "Protein Interactions Two Methods for Aassessment of the Reliability of High Throughput Observations." Molecular \& Cellular Proteomics 1, no. 5 (2002): 349-56.

Note: proteins involved in "true" proteinprotein interactions have more similar mRNA expression profiles than random pairs. Use this to assess how good an experimental set of interactions is.
d = "distance" that measures the difference between two mRNA expression profiles

Co-evolution

Which pattern below is more likely to represent a pair of interacting proteins?

Rosetta Stone

- Look for genes that are fused in some organisms
- Almost 7,000 pairs found in E. coli.
$->6 \%$ of known interactions can be found with this method
- Not very common in eukaryotes

Integrating diverse data

A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data

Ronald Jansen, ${ }^{1 *}$ Haiyuan Yu, ${ }^{1}$ Dov Greenbaum, ${ }^{1}$ Yuval Kluger, ${ }^{1}$
Nevan J. Krogan, ${ }^{4}$ Sambath Chung, ${ }^{1,2}$ Andrew Emili, ${ }^{4}$ Michael Snyder, ${ }^{2}$ Jack F. Greenblatt, ${ }^{4}$ Mark Gerstein ${ }^{1,3} \dagger$

Requirement of Bayesian Classification

- Gold standard training data
- Independent from evidence
- Large
- No systematic bias

Positive training data: MIPS

- Hand-curated from literature

Negative training data:

- Proteins in different subcellular compartments

Integrating diverse data

Data type	Dataset		\# protein pairs	Used for ...
Experimental interaction data	In-vivo pulldown	Gavin et al.	31,304	Integration of experimental interaction data (PIE)
		Ho et al.	25,333	
	Yeast twohybrid	Uetz et al.	981	
		Ito et al.	4,393	
Other genomic features	mRNA Expression	Rosetta compendium	19,334,806	De novo prediction (PIP)
		Cell cycle	17,467,005	
	Biological function	GO biological process	3,146,286	
		MIPS function	6,161,805	
	Essentiality		8,130,528	
Gold standards	Positives	Proteins in the same MIPS complex	8,250	Training \& testing
	Negatives	Proteins separated by localization	2,708,746	

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach
for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.

MIPS function \square

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach
for Predicting Protein-protein Interactions from Genomic Data."

likelihood ratio =

if > 1 classify as true
if <1 classify as false

$$
\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}=\frac{P(\text { Data } \mid \text { true_PPI }) P(\text { true_PPI })}{P(\text { Data } \mid \text { false_PPI }) P(\text { false_PPI })}
$$

log likelihood ratio =

$\log \left[\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}\right]=\log \left[\frac{P(\text { true_PPI })}{P(\text { false_PPI })}\right]+\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right.$
Prior probability is the same for all interactions
--does not affect ranking
Ranking function $=$
$\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right]=\prod_{i}^{M} \frac{P\left(\text { Observation }_{i} \mid \text { true__PI }^{2}\right)}{P\left(\text { Observation }_{i} \mid \text { false_ } P P I\right)}$

Protein pairs in the essentiality data can take on three discrete values (EE, both essential; NN, both non-essential; and NE, one essential and one not)

$$
\text { Likelihood }=\mathrm{L}=\frac{P(f \mid \text { pos })}{P(f \mid \text { neg })}
$$

Essentiality		\# protein pairs	Gold-standard overlap					$P(E s s \mid p o s)$	$P($ Ess \mid neg $)$	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l} \hline \text { sum(pos)/ } \\ \text { sum(neg) } \\ \hline \end{array}$					
\%	EE		384,126	1,114	81,924	1,114	81,924	0.014	$5.18 \mathrm{E}-01$	1.43E-01	3.6
者	NE	2,767,812	624	285,487	1,738	367,411	0.005	$2.90 \mathrm{E}-01$	$4.98 \mathrm{E}-01$	0.6	
${ }^{\text {\% }}$	NN	4,978,590	412	206,313	2,150	573,724	0.004	$1.92 \mathrm{E}-01$	$3.60 \mathrm{E}-01$	0.5	
	Sum	8,130,528	2,150	573,724	,	-		$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

Expression correlation		\# protein pairs	Gold standard overlap					$P($ exp\|pos)	$P(\exp \mid n e g)$	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l\|} \hline \text { sum(pos)/ } \\ \text { sum(neg) } \\ \hline \end{array}$					
$\begin{aligned} & \infty \\ & \frac{ \pm}{\pi} \\ & \gg \end{aligned}$	0.9		678	16	45	16	45	0.36	$2.10 \mathrm{E}-03$	$1.68 \mathrm{E}-05$	124.9
	0.8	4,827	137	563	153	608	0.25	$1.80 \mathrm{E}-02$	$2.10 \mathrm{E}-04$	85.5	
	0.7	17,626	530	2,117	683	2,725	0.25	$6.96 \mathrm{E}-02$	$7.91 \mathrm{E}-04$	88.0	
	0.6	42,815	1,073	5,597	1,756	8,322	0.21	$1.41 \mathrm{E}-01$	$2.09 \mathrm{E}-03$	67.4	
	0.5	96,650	1,089	14,459	2,845	22,781	0.12	$1.43 \mathrm{E}-01$	$5.40 \mathrm{E}-03$	26.5	
	0.4	225,712	993	35,350	3,838	58,131	0.07	$1.30 \mathrm{E}-01$	$1.32 \mathrm{E}-02$	9.9	
	0.3	529,268	1,028	83,483	4,866	141,614	0.03	$1.35 \mathrm{E}-01$	3.12E-02	4.3	
	0.2	1,200,331	870	183,356	5,736	324,970	0.02	$1.14 \mathrm{E}-01$	6.85E-02	1.7	
	0.1	2,575,103	739	368,469	6,475	693,439	0.01	$9.71 \mathrm{E}-02$	$1.38 \mathrm{E}-01$	0.7	
	0	9,363,627	894	1,244,477	7,369	1,937,916	0.00	1.17E-01	$4.65 \mathrm{E}-01$	0.3	
	-0.1	2,753,735	164	408,562	7,533	2,346,478	0.00	$2.15 \mathrm{E}-02$	1.53E-01	0.1	
	-0.2	1,241,907	63	203,663	7,596	2,550,141	0.00	$8.27 \mathrm{E}-03$	$7.61 \mathrm{E}-02$	0.1	
	-0.3	484,524	13	84,957	7,609	2,635,098	0.00	$1.71 \mathrm{E}-03$	$3.18 \mathrm{E}-02$	0.1	
	-0.4	160,234	3	28,870	7,612	2,663,968	0.00	$3.94 \mathrm{E}-04$	$1.08 \mathrm{E}-02$	0.0	
	-0.5	48,852	2	8,091	7,614	2,672,059	0.00	$2.63 \mathrm{E}-04$	$3.02 \mathrm{E}-03$	0.1	
	-0.6	17,423	-	2,134	7,614	2,674,193	0.00	$0.00 \mathrm{E}+00$	$7.98 \mathrm{E}-04$	0.0	
	-0.7	7,602	-	807	7,614	2,675,000	0.00	$0.00 \mathrm{E}+00$	$3.02 \mathrm{E}-04$	0.0	
	-0.8	2,147	-	261	7,614	2,675,261	0.00	$0.00 \mathrm{E}+00$	$9.76 \mathrm{E}-05$	0.0	
	-0.9	67	,	12	7,614	2,675,273	0.00	$0.00 \mathrm{E}+00$	$4.49 \mathrm{E}-06$	0.0	
Sum		18,773,128	7,614	2,675,273	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

MIPS function similarity		\# protein pairs	Gold standard overlap					$P($ MIPS \mid pos $)$	$P($ MIPS \mid neg $)$	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l\|} \hline \text { sum (pos)/ } \\ \text { sum(neg) }) \\ \hline \end{array}$					
$\begin{aligned} & \mathscr{y} \\ & \frac{3}{10} \\ & > \end{aligned}$	1 -- 9		6,584	171	1,094	171	1,094	0.16	2.12E-02	8.33E-04	25.5
	10-99	25,823	584	4,229	755	5,323	0.14	7.25E-02	$3.22 \mathrm{E}-03$	22.5	
	100-- 1000	88,548	688	13,011	1,443	18,334	0.08	$8.55 \mathrm{E}-02$	$9.91 \mathrm{E}-03$	8.6	
	1000-10000	255,096	6,146	47,126	7,589	65,460	0.12	7.63E-01	$3.59 \mathrm{E}-02$	21.3	
	$10000--\operatorname{lnf}$	5,785,754	462	1,248,119	8,051	1,313,579	0.01	$5.74 \mathrm{E}-02$	$9.50 \mathrm{E}-01$	0.1	
	Sum	6,161,805	8,051	1,313,579	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

GO biological process similarity		\# protein pairs	Gold standard overlap					P (GO\|pos)	P (GO\|neg)	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{aligned} & \hline \operatorname{sum}(p o s) / \\ & \operatorname{sum}(n e g) \end{aligned}$					
	$1-9$		4,789	88	819	88	819	0.11	1.17E-02	$1.27 \mathrm{E}-03$	9.2
	10-99	20,467	555	3,315	643	4,134	0.16	$7.38 \mathrm{E}-02$	$5.14 \mathrm{E}-03$	14.4	
$\frac{3}{10}$	100--1000	58,738	523	10,232	1,166	14,366	0.08	$6.95 \mathrm{E}-02$	$1.59 \mathrm{E}-02$	4.4	
$\stackrel{1}{7}$	1000-10000	152,850	1,003	28,225	2,169	42,591	0.05	$1.33 \mathrm{E}-01$	$4.38 \mathrm{E}-02$	3.0	
	$10000--\operatorname{lnf}$	2,909,442	5,351	602,434	7,520	645,025	0.01	$7.12 \mathrm{E}-01$	$9.34 \mathrm{E}-01$	0.8	
	Sum	3,146,286	7,520	645,025	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

What do we mean by fully connected?

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

$P\left(X_{1} \ldots X_{n} \mid \mathrm{PPI}\right)=\prod_{i}[P(X i \mid \mathrm{PPI})]$

$P\left(X_{1} \ldots X_{n} \mid \mathrm{PPI}\right) \neq \prod_{i}[P(X i \mid \mathrm{PPI})]$

(c) American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

Fully connected \rightarrow

Compute probabilities for all 16 possible combinations

Fully connected \rightarrow
 Compute probabilities for all 16 possible combinations

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
Science 302, no. 5644 (2003): 449-53.

Gavin (g)	Ho (h)	Uetz (u)	Ito (i)	\# protein pairs	Gold-standard overlap					$P(g, h, u, i \mid p o s)$	$P(g, h, u, i \mid n e g)$	L
					pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l} \hline \begin{array}{l} \text { sum(pos)/ } \\ \text { sum(neg) } \end{array} \\ \hline \end{array}$			
1	1	1	0	16	6	0	6	0	-	$7.27 \mathrm{E}-04$	$0.00 \mathrm{E}+00$	
1	0	0	1	53	26	2	32	2	16.0	$3.15 \mathrm{E}-03$	$7.38 \mathrm{E}-07$	4268.3
1	1	1	1	11	9	1	41	3	13.7	$1.09 \mathrm{E}-03$	$3.69 \mathrm{E}-07$	2955.0
1	0	1	1	22	6	1	47	4	11.8	$7.27 \mathrm{E}-04$	$3.69 \mathrm{E}-07$	1970.0
1	1	0	1	27	16	3	63	7	9.0	$1.94 \mathrm{E}-03$	$1.11 \mathrm{E}-06$	1751.1
1	0	1	0	34	12	5	75	12	6.3	$1.45 \mathrm{E}-03$	$1.85 \mathrm{E}-06$	788.0
1	1	0	0	1920	337	209	412	221	1.9	$4.08 \mathrm{E}-02$	$7.72 \mathrm{E}-05$	529.4
0	1	1	0	29	5	5	418	227	1.8	$6.06 \mathrm{E}-04$	$1.85 \mathrm{E}-06$	328.3
0	1	1	1	16	1	1	413	222	1.9	$1.21 \mathrm{E}-04$	$3.69 \mathrm{E}-07$	328.3
0	1	0	1	39	3	4	421	231	1.8	$3.64 \mathrm{E}-04$	$1.48 \mathrm{E}-06$	246.2
0	0	1	1	123	6	23	427	254	1.7	$7.27 \mathrm{E}-04$	$8.49 \mathrm{E}-06$	85.7
1	0	0	0	29221	1331	6224	1758	6478	0.3	$1.61 \mathrm{E}-01$	$2.30 \mathrm{E}-03$	70.2
0	0	1	0	730	5	112	1763	6590	0.3	$6.06 \mathrm{E}-04$	4.13E-05	14.7
0	0	0	1	4102	11	644	1774	7234	0.2	$1.33 \mathrm{E}-03$	$2.38 \mathrm{E}-04$	5.6
0	1	0	0	23275	87	5563	1861	12797	0.1	$1.05 \mathrm{E}-02$	$2.05 \mathrm{E}-03$	5.1
0	0	0	0	2702284	6389	2695949	8250	2708746	0.0	$7.74 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	0.8

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

How many gold-standard events do we score correctly at different likelihood
 $\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right]$

 cutoffs?

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
- Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Gene Expression Data

DATA DUMP

The number of gene-expression data sets in publicly available databases has climbed to nearly one million over the past decade.

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Baker, Monya. "Gene Data to Hit Milestone." Nature 487, no. 7407 (2012): 282-3.

- Identify co-expressed genes
- Classify new datasets
- Discover regulatory networks

Clustering

- Text Section 16.2
- Multiple mechanisms could lead to upregulation in any one condition
- Goal: Find genes that have "similar" expression over many condition.
- How do you define "similar"?

Distance Metrics

Expression data as multidimensional vectors

What is a natural way to compare these vectors?

Euclidean

- $X_{i, j}=$ Expression of gene i in condition j

$$
d\left(X_{A}, X_{B}\right)=\sqrt{\sum_{k=1}^{N}\left(X_{A, k}-X_{B, k}\right)^{2}}
$$

Distance

- Metrics have a formal definition:
$-d(x, y) \geq 0$
$-d(x, y)=0$ if and only if $x=y$
$-d(x, y)=d(y, x)$
- Triangle inequality:

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

- The triangle inequality need not hold for a measure of "similarity."
- Distance ~ Dissimilarity = 1 - similarity

Distance Metrics

Can we capture the similarity of these patterns?

Pearson Correlation

- $\mathrm{X}_{\mathrm{i}, \mathrm{j}}=$ Expression of gene i in condition j
- $Z_{i}=z$-score of gene i one experiment:

$$
Z_{A}=\frac{X_{A}-\bar{X}_{A}}{\sigma}
$$

$$
\sigma^{2}=\frac{\sum(X-\bar{X})}{N}
$$

Pearson Correlation

- $X_{i, j}=$ Expression of gene i in condition j
- $Z_{i}=z$-score of gene i one experiment:
- Pearson correlation

$$
r_{A, B}=\frac{\sum Z_{A} Z_{B}}{N}
$$

- from +1 (perfect correlation) to -1 (anti-correlated)
- Distance $=1-r_{A, B}$

$$
Z_{A}=\frac{X_{A}-\bar{X}_{A}}{\sigma} \quad \sigma^{2}=\frac{\sum(X-\bar{X})}{N}
$$

$$
r_{A, B}=\frac{\sum Z_{A} Z_{B}}{N}
$$

$\mathrm{R}_{\mathrm{A}, \mathrm{B}}=-0.01$
$\mathrm{R}_{\mathrm{A}, \mathrm{C}}=0.999$
$R_{B, C}=-0.03$

$$
Z_{A}=\frac{X_{A}-\bar{X}_{A}}{\sigma}
$$

$$
\frac{\sum Z_{A} Z_{B}}{N}
$$

$R_{A, B}=-0.01$
$R_{A, D}=-1.0$
$R_{B, D}=0.007$
$r_{A, B}=\frac{\sum Z_{A} Z_{B}}{N}$

Distance Metrics

Missing Data

- What if a particular data point is missing? (Back in the old days: there was a bubble or a hair on the array)
- ignore that gene in all samples
- ignore that sample for all genes
- replace missing value with a constant
- "impute" a value
- example: compute the K most similar genes (arrays) using the available data; set the missing value to the mean of that for these K genes (arrays)

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
- Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Clustering

- Intuitive idea that we want to find an underlying grouping
- In practice, this can be hard to define and implement.

- An example of unsupervised learning

Unsupervised Learning

NETFLIX

Netflly Prize

Home Rules Leaderboard Update
The Netflix Prize Rules

For a printable copy of these rules, go here.

Overview:

We're quite curious, really. To the tune of one million dollars.
Nettlix is all about connecting people to the movies they love. To help customers find those movies, we've developed our world-class movie recommendation system: Cinematch ${ }^{5 M}$. Its job is to predict whether someone will enioy a movie based world-class movie recommendation system: Cinematch ${ }^{\text {sun }}$. It job is to predict whether someone will enjoy a movie based based on each customer's unique tastes. And while Cinematch is doing pretty well, it can always be made better.
Now there are a lot of interesting alternative approaches to how Cinematch works that we haven't tried. Some are described in the literature, some aren't. We're curious whether any of these can beat Cinematch by making better predictions. Because, frankly, if there is a much better approach it could make a big difference to our customers and our business.
So, we thought we'd make a contest out of finding the answer. It's "easy" really. We provide you with a lot of anonymous rating data, and a prediction accuracy bar that is 10% better than what Cinematch can do on the same training data set (Accuracy is a measurement of how closely predicted ratings of movies match subsequent actual ratings.) If you develop system that we judge most beats that bar on the qualifying test set we provide, you get serious money and the bragging rights. But (and you knew there would be a catch, right?) only if you share your method with us and describe to the world
how you did it and why it works.

Serious money demands a serious bar. We suspect the 10% improvement is pretty tough, but we also think there is a good chance it can be achieved. It may take months; it might take years. So to keep things interesting, in addition to the Grand Prize, we're also offering a $\$ 50,000$ Progress Prize each year the contest runs. It goes to the team whose system we judge shows the most improvement over the previous year's best accuracy bar on the same qualifying test set No world.
There is no cost to enter, no purchase required, and you need not be a Nettlix subscriber. So if you know (or want to learn) something about machine learning and recommendation systems, give it a shot. We could make it really worth your while.
\qquad
© Netflix, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Why cluster?

- Cluster genes (rows)
- Measure expression at multiple time-points, different conditions, etc.

Similar expression patterns may suggest similar functions of genes

- Cluster samples (columns)
- e.g., expression levels of thousands of genes for each tumor sample

Similar expression patterns may suggest biological relationship among samples

Hierarchcial clustering

Two types of approaches:
-Agglomerative

- Divisive

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Agglomerative Clustering Algorithm

- Initialize: Each data point is in its own cluster
- Repeat until there is only one cluster:
- Merge the two most similar clusters.

Agglomerative Clustering Algorithm

- Initialize: Each data point is in its own cluster
- Repeat until there is only one cluster:
- Merge the two most similar clusters.

If distance is defined for a vector, how do I compare clusters?

- Clusters Y, Z with A in Y and B in Z
- Single linkage $=\min \left\{\mathrm{d}_{\mathrm{A}, \mathrm{B}}\right\}$

Complete linkage $=\max \left\{\mathrm{d}_{\mathrm{A}, \mathrm{B}}\right\}$ UPGMC (Unweighted Pair Group Method using Centroids

$$
\text { centroid }=\hat{Y}=\frac{1}{N_{Y}} \sum_{i \in Y} X_{i, j}
$$

- Define distance as $\quad \delta_{Y, Z}=d_{\hat{Y}, \hat{Z}}$
- UPGMA (Unweighted Pair Group Method with Arithmetic Mean) average of pairwise distances:

$$
\delta_{Y, Z}=\frac{1}{N_{Y} N_{Z}} \sum_{i \in Y} \sum_{j \in Z} d_{i, j}
$$

- Single linkage $=\min \left\{\mathrm{d}_{\mathrm{A}, \mathrm{B}}\right\}$
- Complete linkage $=\max \left\{\mathrm{d}_{\mathrm{A}, \mathrm{B}}\right\}$

- If clusters exist and are compact, it should not matter.
- Single linkage will "chain" together groups with one intermediate point.
- Complete linkage will not combine two groups if even one point is distant.

Interpreting the Dendogram

- This produces a binary tree or dendrogram
- The final cluster is the root and each data item is a leaf
- The heights of the bars indicate how close the items are
- Can 'slice' the tree at any distance cutoff to produce discrete clusters
- Dendogram represents the results of the clustering; its usefulness in representing the data is mixed.
- The results will always be hierarchical, even if the data are not.

K-means clustering

- Advantage: gives sharp partitions of the data
- Disadvantage: need to specify the number of clusters (K).
- Goal: find a set of k clusters that minimizes the distances of each point in the cluster to the cluster mean:

$$
\begin{aligned}
& \operatorname{centroid}_{j}=\hat{Y}_{j}=\frac{1}{N_{Y_{j}}} \sum_{i \in Y_{j}} X_{i} \\
& \underset{C}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{j \in C(i)}\left|X_{j}-\hat{Y}_{i}\right|^{2}
\end{aligned}
$$

K-means clustering algorithm

- Initialize: choose k points as cluster means
- Repeat until convergence:
- Assignment: place each point X_{i} in the cluster with the closest mean.
- Update: recalculate the mean for each cluster

What if you choose the wrong K?

What if we choose pathologically bad initial positions?

What if we choose pathologically bad initial positions?

Often, the algorithm gets a reasonable answer, but not always!

Convergence

- K-means always converges.
- The assignment and update steps always either reduce the objective function or leave it unchanged.

Convergence

- However, it doesn't always find the same solution.

Fuzzy K-means

K-means

- Initialize: choose k
points as cluster means
- Repeat until convergence:
- Assignment: place each point X_{i} in the cluster with the closest mean.
- Update: recalculate the mean for each cluster

Fuzzy k-means

- Initialize: choose k
points as cluster means
- Repeat until convergence:
- Assignment: calculate probability of each point belonging to each cluster.
- Update: recalculate the mean for each cluster using these probabilities

K-means

Fuzzy k-means

$\mu_{i, j}^{r}=$ membership of point j in cluster i Larger values of r make the clusters more fuzzy.

Example of Fuzzy K-means

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. Source: Olsen, Jesper V., Blagoy Blagoev, et al. "Global, In Vivo, and Site-specific Phosphorylation Dynamics in Signaling Networks." Cell 127, no. 3 (2006): 635-48.

Limits of k-means

K-means uses Euclidean distance

$$
\begin{aligned}
& \underset{C}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{j \in C(i)}\left|X_{j}-\hat{Y}_{i}\right|^{2} \\
& \text { centroid }_{j}=\hat{Y}_{j}=\frac{1}{N_{Y_{j}}} \sum_{i \in Y_{j}} X_{i}
\end{aligned}
$$

- Gives most weight to largest differences
- Can't be used if data are qualitative
- Centroid usually does not represent any datum

K-means

- Best clustering minimizes within-cluster Euclidean distance of from centroids
centroid $=\hat{Y}=\frac{1}{N_{Y}} \sum_{i \in Y} X_{i, j}$

K-medoids

- Best clustering minimizes within-cluster dissimilarity from medoids (exemplar)
$\operatorname{medoid}_{k}=\underset{i}{\operatorname{argmin}} \sum_{i^{\prime} \in C(k)} D\left(X_{i}, X_{i}^{\prime}\right)$

K-medoids clustering

- Initialize: choose k points as cluster means
- Repeat until convergence:
- Assignment: place each point X_{i} in the cluster with the closest medoid.
- Update: recalculate the medoid for each cluster

Other approaches

- SOM (Text 16.3)
- Affinity Propagation
- Frey and Dueck (2007) Science.

So What?

- Clusters could reveal underlying biological processes not evident from complete list of differentially expressed genes
- Clusters could be co-regulated. How could we find upstream factors?

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
- Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Personalized Medicine

- Can gene expression be used for diagnosis and to determine the best treatment?

Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Alizadeh, Ash A., Michael B. Eisen, et al. "Distinct Types of Diffuse Large B-cell
Lymphoma Identified by Gene Expression Profiling." Nature 403, no. 6769 (2000): 503-11.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Alizadeh, Ash A., Michael B. Eisen, et al. "Distinct Types of Diffuse Large B-cell
Lymphoma Identified by Gene Expression Profiling." Nature 403, no. 6769 (2000): 503-11.

Alizadeh et al.(2000) Nature.

Courtesy of Venet et al. License: CC-BY.
Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene Expression Signatures are Significantly Associated with Breast Cancer Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.

Testing whether laughter IS the best medicine

(c) FarWorks, Inc. All rights reserved. This content is excluded from our Creative Commons license. For■more information, see http://ocw.mit.edu/help/faq-fair-use/.

OS= the fraction of patients alive (overall survival) Hazard Ratio= Death rate vs. control

Courtesy of Venet et al. License: CC-BY.
Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene Expression Signatures are Significantly Associated with Breast Cancer Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.

Testing whether laughter IS the best medicine

(C) FarWorks, Inc. All rights reserved. This content is excluded from our Creative Commons license. For■more information, see http://ocw.mit.edu/help/faq-fair-use/.

OS= the fraction of patients alive (overall survival) Hazard Ratio= Death rate vs. control

Most Random Gene Expression Signatures Are Significantly Associated with Breast Cancer Outcome

David Venet ${ }^{1}$, Jacques E. Dumont ${ }^{2}$, Vincent Detours ${ }^{2,3 *}$

1 IRIDIA-CoDE, Université Libre de Bruxelles (U.LB.), Brussels, Belgium, $\mathbf{2} \operatorname{IRIBHM}$, Université Libre de Bruxelles (U.LB.), Campus Erasme, Brussels, Belgium, $\mathbf{3}$ WELBIO, Université Libre de Bruvelles (U.LB.), Campus Erasme, Brussels, Belgium

A
post-prandial laughter

social defeat in mice

B localization of skin fibroblasts

Courtesy of Venet et al. License: CC-BY.
Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene Expression Signatures are Significantly Associated with Breast Cancer Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.

OS= the fraction of patients alive (overall survival) Hazard Ratio= Death rate vs. control
$\log _{10}(0.05)$

Published Signature

Courtesy of Venet et al. License: CC-BY.
Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene Expression Signatures are Significantly Associated with Breast Cancer Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.

Courtesy of Venet et al. License: CC-BY.
Source: Venet, David, Jacques E. Dumont, et al. "Most Random Gene
Expression Signatures are Significantly Associated with Breast Cancer
Outcome." PLoS Computational Biology 7, no. 10 (2011): e1002240.
PCNA metagene $=1 \%$ genes the most positively correlated with expression of PCNA (proliferating cell nuclear antigen, a known marker) across 36 tissues

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
- Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Reconstructing Regulatory Networks

Courtesy of Elsevier B.V. Used with permission.
Source: Sumazin, Pavel, Xuerui Yang, et al. "An Extensive MicroRNA-mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma." Cell 147, no. 2 (2011): 370-81.

Clustering vs. "modules"

- Clusters are purely phenomenological - no claim of causality
- The term "module" is used to imply a more mechanistic connection

Wisdom of crowds for robust gene network inference

Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega, Robert J Prill, Diogo M Camacho, Kyle R Allison, The DREAM5 Consortium, Manolis Kellis, James J Collins \& Gustavo Stolovitzky

Affiliations | Contributions | Corresponding author

Nature Methods 9, 796-804 (2012) | doi:10.1038/nmeth. 2016
Received 31 October 2011 | Accepted 22 May 2012 | Published online 15 July 2012

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for
Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.

Wisdom of crowds for robust gene network inference Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
Wisdom of crowds for robust gene network inference Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
-Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Bayesian Networks

 MIPS function \square
 Essentiality

Predict unknown variables from observations

A "natural" way to think about biological networks.

Is the p53 pathway activated?

Courtesy of Looso et al. License: CC-BY.
Source: Looso, Mario, Jens Preussner, et al. "A De Novo Assembly of the Newt Transcriptome Combined with Proteomic Validation Identifies New Protein Families Expressed During Tissue Regeneration." Genome Biology 14, no. 2 (2013): R16.

Is the p53 pathway activated?

Possible Evidence

-Known p53 targets are up-regulated

Courtesy of Looso et al. License: CC-BY.
Source: Looso, Mario, Jens Preussner, et al. "A De Novo Assembly of the Newt Transcriptome Combined with Proteomic Validation Identifies New Protein Families Expressed During Tissue Regeneration." Genome Biology 14, no. 2 (2013): R16.

Is the p53 pathway activated?

- Formulate problem probabilistically
- Compute
- P(p53 pathway activated| data)
- How?
- Relatively easy to compute p(X up | TF up)
- How?

Is the p53 pathway activated?

- Formulate problem probabilistically
- Compute
- P(p53 pathway activated| data)
- How?
- Relatively easy to compute $\mathrm{p}(\mathrm{X}$ up | TF up)
- Look over lots of experiments and tabulate:
- X1 up \& TF up
- X1 up \& TF not up
- X1 not up \& TF not up
- X1 not up \& TF up

Is the p53 pathway activated?

- Formulate problem probabilistically
- Compute
- P(p53 pathway activated| data)
- How?
- Relatively easy to compute $p(X$ up | TF up)
$-\mathrm{P}($ TF up $\mid X$ up $)=p(X$ up | TF up) $p(T F$ up $) / p(X$ up $)$

Is the p53 pathway activated?

- Formulate problem probabilistically
- Compute
- P(p53 pathway activated| data)
- How?
- Even with p(TF up | X up) how do we compare this explanation of the data to other possible explanations?
- Can we include upstream data?

Application to Gene Networks

-Which pathway activated this set of genes?
-Either A or B or both would produce similar but not identical results.
-Bayes Nets estimate conditional probability tables from lots of gene expression data.

- How often is TF B2
expressed when TF B1 is expressed, etc.

Application to Gene Networks

Multi-layer networks are possible, but feedback is not

Learning Models from Data

- Searching for the BN structure: NP-complete
- Too many possible structures to evaluate all of them, even for very small networks.
- Many algorithms have been proposed
- Incorporated some prior knowledge can reduce the search space.
- Which nodes should regulate transcription?
- Which should cause changes in phosphorylation?
- Intervention experiments help

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Sachs, Karen, Omar Perez, et al. "Causal Protein-signaling Networks Derived From Multiparameter Single-cell Data." Science 308, no. 5721 (2005): 523-9.
- Without interventions, all we can say is that X and Y are correlated
- Interventions allow us to determine which is the parent.
K. Sachs et al., Science 308, 523-529 (2005)

Fig. 1. Bayesian network modeling with single-cell data

B

If we don't measure " γ " can we still model the data?

 The relationship of X and Z, W will be noisy and might be missed.

$y-z$

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Sachs, Karen, Omar Perez, et al. "Causal Protein-signaling Networks Derived From
Multiparameter Single-cell Data." Science 308, no. 5721 (2005): 523-9.
K. Sachs et al., Science 308, 523-529 (2005)

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
-Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Regression-based models

(c) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Predicted expression: $Y_{g}=f_{g}\left(X_{T g}\right)+\varepsilon$

Assume that expression of gene X_{g} is some function of the expression of its transcription factors $X_{T g}=\left\{X_{t}, t \in T_{g}\right\}$ $\mathrm{X}_{\mathrm{i}}=$ measured expression of i-th gene
$\mathrm{X}_{\mathrm{Ti}}=$ measured expression of a set of TFs potentially regulating gene i
f_{g} is an arbitrary function
ϵ is noise

Regression-based models

(c) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
$f_{g}\left(X_{T_{g}}\right)=\sum_{t \in T_{g}} \beta_{t, g} X_{t}$
f_{g} is frequently assumed to be a linear function The values of the $\beta_{t, g}$ reflect the influence of each TF on gene g

How do we discover the values of the $\beta_{t, g}$?
BMC Syst Biol. 2012 Nov 22;6:145. doi: 10.1186/1752-0509-6-145.
TIGRESS: Trustful Inference of Gene REgulation using Stability Selection.

Regression-based models

$$
Y_{g}=\sum_{t \in T_{g}} \beta_{t, g} X_{t}+\varepsilon
$$

Define an objective function:
Sum over M training data sets and N genes
Find parameters that minimize "residual sum of squares" between observed (X) and predicted (Y) expression levels.

$$
R S S=\sum_{j=1}^{M} \sum_{i=1}^{N}\left(X_{i, j}-Y_{i, j}\right)^{2}
$$

Regression-based models

$$
Y_{g}=\sum_{t \in T_{g}} \beta_{t, g} X_{t}+\varepsilon \quad R S S=\sum_{j=1}^{M} \sum_{i=1}^{N}\left(X_{i, j}-Y_{i, j}\right)^{2}
$$

Problems:

Standard regression will produce many very small values of β, which makes interpretation difficult
β values can be unstable to changes in training data Solutions:
Subset Selection and Coefficient Shrinkage
-see Section 3.4 of Hastie Tibshirani and Friedman
"The elements of statistical learning" for general approaches and "TIGRESS: Trustful Inference of Gene REgulation using Stability
Selection" for a successful DREAM challenge doi: 10.1186/1752-0509-6-145.

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
-Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Quick Review of Information Theory

Information content of an event E

$$
I(E)=\log _{2} \frac{1}{P(E)}
$$

Rare letters have higher information content

© Califon Productions, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Quick Review of Information Theory

Information content of an event E

$$
I(E)=\log _{2} \frac{1}{P(E)}
$$

Entropy is evaluated over all possible

$$
H(S)=\sum_{i} p_{i} I\left(s_{i}\right)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}
$$

$$
H(f)=-\int f(x) \ln f(x) d x
$$

Mutual Information

- Does knowing variable X reduce the uncertainty in variable Y ?
- Example:
- P(Rain) depends on P(Clouds)
- P(target expressed) depends on P(TF expressed)

$$
I(x, y)=H(x)+H(y)-H(x, y)
$$

- $I(x, y)=0$ means variables are independent
- Reveals non-linear relationships that are missed by correlation.

Mutual information detects non-linear relationships

Incoherent feed-forward loop (FFL)

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
No correlation, but knowing A reduces the uncertainty in the distribution of B

Mutual information detects non-linear relationships

- Complex regulatory network structure => complex relationships between protein levels
- Example: incoherent feed-forward loop (FFL)

ARACNe

Reverse engineering of regulatory networks in human B cells

Katia Basso ${ }^{1}$, Adam A Margolin ${ }^{2}$, Gustavo Stolovitzky ${ }^{3}$, Ulf Klein ${ }^{1}$, Riccardo Dalla-Favera ${ }^{1,4}$ \& Andrea Califano ${ }^{2}$

ARACNe

- Find TF-target relationships using mutual information

$$
H(f)=-\int f(x) \ln f(x) d x
$$

- How do you recognize a significant value of MI?
- randomly shuffle expression data
- compute distribution of Mutual information

ARACNE

- Data processing inequality
- Eliminate indirect interactions
- If G2 regulates G1,G3 I(G1,G3)>0 but adds no insight
- Remove edge with smallest mutual information in

G1

G3 each triple

$$
I\left(g_{1}, g_{3}\right) \leq \min \left[I\left(g_{1}, g_{2}\right) ; I\left(g_{2}, g_{3}\right)\right]
$$

MINDy

- Identify proteins that modulate TF function - Other TFs

Genome-wide identification of post-translational modulators of transcription factor activity in human B cells

Kai Wang ${ }^{1,2,5,6}$, Masumichi Saito ${ }^{3,5,6}$, Brygida C Bisikirska ${ }^{2}$, Mariano J Alvarez ${ }^{2}$, Wei Keat Lim ${ }^{1,2,5}$, Presha Rajbhandari ${ }^{2}$, Qiong Shen ${ }^{3}$, Ilya Nemenman ${ }^{2,5}$, Katia Basso ${ }^{3}$, Adam A Margolin ${ }^{1,2,5}$, Ulf Klein ${ }^{3}$, Riccardo Dalla-Favera ${ }^{3,4}$ \& Andrea Califano ${ }^{1-3}$

Model

- Assumes that expression of target T is determined by TF and modulator (M)

$$
[T]=C \cdot[T F]^{k} \cdot[M]^{*}
$$

Modulator present at highest levels
Modulator present at lowest levels
-> Suggests M is an activator
TF

Microarray expression profile data

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Posttranslational Modulators of Transcription Factor Activity in Human B cells." Nature Biotechnology 27, no. 9 (2009): 829-37.

Filters

1. expression of the modulator and of the TF must be statistically independent
2. the modulator expression must have sufficient range
3. may be filtered by additional criteria-for example, molecular functions.

Supplementary Table 12. Inferring the biological activity of a MINDy modulator. MoA: MINDy mode of action; ρ : Pearson correlation between $T F$ and the target gene $t ; \mu_{t}^{ \pm}$: the mean expression of t in the most and least expressed condition of the modulator. BA biological activity. The schematic scatter plots shown in the table demonstrate the relationship between $T F$ and t when the modulator is most (red dots) and least (blue dots) expressed.

MoA	ρ	$\mu_{t}^{+}-\mu_{t}^{-}$	Plot	BA	$\operatorname{Sign}\left(\rho\left(\mu_{t}^{+}-\mu_{t}^{-}\right)\right)$
+	+	+	t	Activator	$+$
+	+	-		Antagonist	-
+	-	-		Activator	+
+	-	+		Antagonist	-
-	+	-		Antagonist	-
-	+	+	t	Activator	+
-	-	+		Antagonist	-
-	-	-		Activator	+

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Posttranslational Modulators of Transcription Factor Activity in Human B cells." Nature Biotechnology 27, no. 9 (2009): 829-37.
where ρ is the Pearson correlation between TF and t_{i}, and $\mu_{t}^{ \pm}$is the mean expression of t_{i} in $L_{m}^{ \pm}$. In practice, however, the difference between $\mu_{t_{i}}^{ \pm}$has to be assessed statistically. In this work, we choose to use the two sample Student t-test (two sided) that assess the null hypothesis of $\mu_{t_{i}}^{+}=\mu_{t_{i}}^{-}$. If the null hypothesis can not be rejected at $\alpha=0.1$, we assign the mode to be undermined; otherwise, M_{j} is considered an activator or antagonist (depending on which tail is tested) of the interaction between TF and t_{i}.

Note than none of these curve saturate

What regulates MYC?

Input:
254 expression profiles in B cells
(normal and tumor)
various sets of candidate regulators
Evaluation:

1. comparison to known modulators
2. experimental tests of four candidates

What regulates MYC?

a

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Wang, Kai, Masumichi Saito, et al. "Genome-wide Identification of Posttranslational Modulators of Transcription Factor Activity in Human B cells." Nature Biotechnology 27, no. 9 (2009): 829-37.

Limitations

- Need huge expression datasets
- Can't find:
- modulator that do not change in expression
- modulator that are highly correlated with target
- modulators that both activate and repress

Huge networks!

This is just the nearest neighbors of one node of interest from ARACNe!

Nature

Medicine 18, 436440 (2012) doi:10.1038/n m. 2610

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Della Gatta, Giusy, Teresa Palomero, et al. "Reverse Engineering of TLX Oncogenic Transcriptional Networks Identifies RUNX1 as Tumor Suppressor in T-ALL." Nature Medicine 18, no. 3 (2012): 436-40.

Huge networks!

Conditional MI network of miR modulators 248,000 interactions
http://www.sciencedirect.com/scienc e/article/pii/S0092867411011524

Courtesy of Elsevier B.V. Used with permission.
Source: Sumazin, Pavel, Xuerui Yang, et al. "An Extensive MicroRNA-mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma." Cell 147, no. 2 (2011): 370-81.

MINDy modulators

	Potential Modulators		
Source of targets	Signaling (542)	TFs (598)	Any $(3,131)$
Database	91	99	
ARACNe	80	85	
ALL	$[25 / 296]$	$[32 / 296]$	296

MINDy selects between 10-20\% of candidates!

Outline

- Bayesian Networks for PPI prediction
- Gene expression
- Distance metrics
- Clustering
- Signatures
-Modules
- Bayesian networks
- Regression
- Mutual Information
- Evaluation on real and simulated data

Wisdom of crowds for robust gene network inference

Daniel Marbach, James C Costello, Robert Küffner, Nicole M Vega, Robert J Prill, Diogo M Camacho, Kyle R Allison, The DREAM5 Consortium, Manolis Kellis, James J Collins \& Gustavo Stolovitzky

Affiliations | Contributions | Corresponding author

Nature Methods 9, 796-804 (2012) | doi:10.1038/nmeth. 2016
Received 31 October 2011 | Accepted 22 May 2012 | Published online 15 July 2012

AUPR = area under precision-recall curve

Courtesy of Macmillan Publishers Limited. Used with permission
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.

Wisdom of crowds for robust gene network inference
Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.

Wisdom of crowds for robust gene network inference Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust
Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.

Wisdom of crowds for robust gene network inference

Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

C Tested novel interactions

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for
Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
Wisdom of crowds for robust gene network inference Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.
Wisdom of crowds for robust gene network inference
Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804.

Wisdom of crowds for robust gene network inference
Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Marbach, Daniel, James C. Costello, et al. "Wisdom of Crowds for Robust Gene Network Inference." Nature Methods 9, no. 8 (2012): 796-804

Wisdom of crowds for robust gene network inference
Nature Methods 9, 796-804 (2012) doi:10.1038/nmeth. 2016

Thoughts on Gene Expression Data

- Useful for classification and clustering
- Not sufficient for reconstructing regulatory networks in yeast
- Can we infer levels of proteins from gene expression?

Approach

mRNA levels do not predict protein levels

000 fold range protein oncentrations

(arbitrary units, log-scale base 10)
(C) Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative

Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: de Sousa Abreu, Raquel, Luiz O. Penalva, et al. "Global Signatures of Protein and mRNA Expression Levels." Molecular Biosystems 5, no. 12(2009): 1512-26.

Raquel de Sousa Abreu, Luiz Penalva, Edward Marcotte and Christine Vogel, Mol. BioSyst., 2009 DOI: 10.1039/b908315d

	SpectrumMill	msInspect	msBID	NSAF	RPKM	Microarray
SpectrumMill	-	$0.91(0.92)$	$0.91(0.91)$	$0.90(0.90)$	$0.49(0.51)$	$0.36(0.40)$
msInspect	$0.91(0.92)$	-	$0.89(0.91)$	$0.87(0.88)$	$0.51(0.53)$	$0.40(0.44)$
msBID	$0.91(0.91)$	$0.89(0.91)$	-	$0.84(0.89)$	$0.54(0.54)$	$0.41(0.42)$
NSAF	$0.90(0.90)$	$0.87(0.88)$	$0.84(0.89)$	-	$0.51(0.53)$	$0.42(0.44)$

Source: Ning, Kang, Damian Fermin, et al. "Comparative Analysis of Different Label-free Mass Spectrometry Based Protein Abundance Estimates and Their Correlation with RNA-Seq
Gene Expression Data." Journal of Proteome Research 11, no. 4 (2012): 2261-71.
a

\square mRNA transcription $\left(v_{\mathrm{sr}}\right)$
mRNA degradation $\left(k_{\mathrm{dr}}\right)$
mRNA levels
\square Protein translation $\left(k_{\mathrm{sp}}\right)$
\square Protein degradation $\left(k_{\mathrm{dp}}\right)$
\square Noise/variability

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Schwanhäusser, Björn, Dorothea Busse, et al. "Global Quantification of Mammalian Gene Expression Control." Nature 473, no. 7347 (2011): 337-42.

Nature. 2011 May 19;473(7347):337-42. doi: 10.1038/nature10098.
Global quantification of mammalian gene expression control.
Schwanhäusser B1, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M.

- L14 - Predicting protein interactions
- L15 - Gene Regulatory Networks
- L16 - Protein Interaction Networks
- L17 - Computable Network Models

MIT OpenCourseWare
http://ocw.mit.edu
7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

