- L12 - Introduction to Protein Structure; Structure Comparison \& Classification
- L13 - Predicting protein structure
- L14 - Predicting protein interactions
- L15 - Gene Regulatory Networks
- L16 - Protein Interaction Networks
- L17 - Computable Network Models

Predictions

Last time: protein structure

 2JOF $1.4 \mathrm{~A} \quad 14 \mu \mathrm{~s}$

WW domain $1137 \mu \mathrm{~s}$ $2 F 211.2 \AA 21 \mu \mathrm{~s}$

Homeodomain $327 \mu \mathrm{~s}$ 2P6J 3.6A $3.1 \mu \mathrm{~s}$

2HBA $0.5 \AA \quad 29 \mu \mathrm{~s}$

Protein G $1154 \mu \mathrm{~s}$ 1MIO 1.2 A $65 \mu \mathrm{~s}$

Protein B

1PRB 3.3 A $104 \mu \mathrm{~s}$

λ-repressor $643 \mu \mathrm{~s}$ 1LMB $1.8 \AA 49 \mu \mathrm{~s}$
© American Association for the Advancement of Science. All rights reserved. This content is excludedfrom our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Lindorff-Larsen, Kresten, Stefano Piana, et al. "How Fast-folding Proteins Fold." Science 334, no. 6055 (2011): 517-20.

Now: protein interactions

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Prediction Challenges

- Predict effect of point mutations
- Predict structure of complexes
- Predict all interacting proteins

Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions

"Simple" challenge: Starting with known structure of a complex: predict how much a mutation changes binding affinity.

Figure 1
The structures of (A) HB36 (B) HB80 in complex with HA (blue) which were provided to participants. Residues probed in the deep sequencing enrichment experiment are in orange; the remainder are in grey. Residues at the interface are represented as sticks.

Area under curve for predictions (varying cutoff in ranking)

HB36, all mutations

Beneficial AUC
(C) source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Predicting Structures of Complexes

- Can we use structural data to predict complexes?
- This might be easier than quantitative predictions for site mutants.
- But it requires us to solve a docking problem

Docking

Which surface(s) of protein A interactions with which surface of protein B?

Courtesy of Nurcan Tuncbag. Used with permission.
N. Tuncbag

Docking

Courtesy of Nurcan Tuncbag. Used with permission.

Imagine we wanted to predict which proteins interact with our favorite molecule.
For each potential partner:
-Evaluate all possible relative positions and orientations

This approach would be extremely slow!
It's also prone to false positives. Why?
-allow for structural
rearrangements
-measure energy
of interaction

Reducing the search space

- Efficiently choose potential partners before structural comparisons
- Use prior knowledge of interfaces to focus analysis on particular residues

Next

PRISM

Fast and accurate modeling of protein-protein interactions by combining template-interface-based docking with flexible refinement.
Tuncbag N, Keskin O, Nussinov R, Gursoy A.
http://www.ncbi.nlm.nih.gov/ pubmed/22275112

PrePPI

Structure-based prediction of protein-protein interactions on a genomewide scale

Zhang, et al.
http://www.nature.com/natur
e/journal/v490/n7421/full/ nature11503.html

PRISM's Rationale

There are limited number of protein "architectures".

Protein structures can interact via similar architectural motifs even if the overall structures differ

Find particular surface regions of proteins that are spatially similar to the complementary partners of a known interface
N. Tuncbag

PRISM's Rationale

- Two components:
- rigid-body structural comparisons of target proteins to known template protein-protein interfaces
- flexible refinement using a docking energy function.
- Evaluate using structural similarity and evolutionary conservation of putative binding residue 'hot spots'.
N. Tuncbag

Subtilisin and its inhibitors

Although global folds of Subtilisin's partners are very different, binding regions are structurally very conserved.

Hotspots

Fig. 1. Contribution of only a subset of contact residues to net binding energy. (A) Loss of solvent-accessible area (7) of the side chain portion of each residue in the hGHbp on forming a complex with hGH. (B) Difference in binding free energy between alanine-substituted and wild-type hGHbp $(\Delta \Delta G)_{\text {mut-wt }}$ at contact residues (5). Negative values indicate that affinity increased when the side chain was substituted by alanine.

(c) American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Clackson, Tim and James A. Wells. "A Hot Spot of Binding Energy in a Hormone-Receptor Interface." Science 267, no. 5196 (1995): 383-6.

Hotspots

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Clackson, Tim and James A. Wells. "A Hot Spot of Binding Energy in a Hormone-Receptor Interface." Science 267, no. 5196 (1995): 383-6.

- Fewer than 10% of the residues at an interface contribute more than $2 \mathrm{kcal} / \mathrm{mol}$ to binding.
- Hot spots
- rich in Trp, Arg and Tyr
- occur on pockets on the two proteins that have complementary shapes and distributions of charged and hydrophobic residues.
- can include buried charge residues far from solvent
- O-ring structure excludes solvent from interface

1. Identify interface of template (distance cutoff)

2. Identify interface of template (distance cutoff)

Courtesy of Nurcan Tuncbag. Used with permission.
N. Tuncbag

1. Identify interface of template (distance cutoff)
2. Align entire surface of query to half-interfaces
3. Test
4. Overall structural match
5. Structural match of at hotspots
6. Sequence match at hotspots

Flowchart

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Tuncbag, Nurcan, Attila Gursoy, et al. "Predicting Protein-protein Interactions on a Proteome Scale by Matching Evolutionary and Structural Similarities at Interfaces using PRISM." Nature Protocols 6, no. 9 (2011): 1341-54.

Structural match of template and target does not depend on order of residues

Predicted p27 Protein Partners

Next

PrePPI

Structure-based prediction of protein-protein interactions on a genomewide scale

Zhang, et al.
http://www.nature.com/natur e/journal/v490/n7421/full/ nature11503.html

Template complexes from PDB

Interaction models

Structural-based

PrePPI

Scores potential templates without building a homology model
Criteria
Geometric similarity between the protomer and template Statistics based on preservation of contact residues

Structure-based prediction of protein-protein interactions on a genome-wide scale Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)

Structure-based prediction of protein-protein interactions on a genome-wide scale Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
2. Find structural neighbors $\left(\mathrm{NA}_{\mathrm{i}}, \mathrm{NB}_{\mathrm{i}}\right)($ avg:1,500 neighbors/structure $)$

Structure-based prediction of protein-protein interactions on a genome-wide scale Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
2. Find structural neighbors $\left(\mathrm{NA}_{\mathrm{i}}, \mathrm{NB}_{\mathrm{i}}\right)$ (avg:1,500 neighbors/structure)
3. Look for structure of a complex containing structural neighbors

Structure-based prediction of protein-protein interactions on a genome-wide scale Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA, MB)
2. Find structural neighbors $\left(\mathrm{NA}_{\mathrm{i}}, \mathrm{NB}_{\mathrm{i}}\right)$ (avg:1,500 neighbors/structure)
3. Look for structure of a complex containing structural neighbors
4. Align sequences of $M A, M B$ to $N A, N B$ based on structure

Structure-based prediction of protein-protein interactions on a genome-wide scale Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

Courtesy of Macmillan Publishers Limited. Used with permission
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein
Interactions on a Genome-wide Scale." Nature 490 no 7421 (2012):556-60. Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
2. Find structural neighbors $\left(\mathrm{NA}_{\mathrm{i}}, \mathrm{NB}_{\mathrm{i}}\right)$ (avg:1,500 neighbors/structure)
3. Look for structure of a complex containing structural neighbors
4. Align sequences of $M A, M B$ to $N A, N B$ based on structure

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
5. Identify interacting residues in template complex (Called NA1 NB3 in rest of paper)
6. Predict interacting residues for the homology models

Template Complex
Interaction Model

$\mathrm{ta}_{5} / \mathrm{tb}_{7}\left|\mathrm{ta}_{6} / \mathrm{tb}_{6}\right| \mathrm{ta}_{7} / \mathrm{tb}_{5}\left|\mathrm{ta}_{8} / \mathrm{tb}_{4}\right| \mathrm{ta}_{9} / \mathrm{tb}_{3}\left|\mathrm{ta}_{10} / \mathrm{tb}_{2}\right| \mathrm{ta}_{11} / \mathrm{tb}_{4}$
Interacting residue pairs
 $\mathrm{ma}_{1} \cdots \mathrm{ma}_{5} \cdots \mathrm{ma}_{12} \mathrm{mb}_{1} \cdots \mathrm{mb}_{4} \cdots \mathrm{mb}_{8}$

$$
\begin{array}{|l|l|l|}
\hline \mathrm{ma}_{5} & \mathrm{ma}_{8} & \mathrm{ma}_{9} \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{mb}_{2} & \mathrm{mb}_{3} & \mathrm{mb}_{4} & \mathrm{mb}_{7} \\
\hline
\end{array}
$$

Predicted interfacial residues

Evaluate based on five measures

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Evaluate based on five measures:
-SIM: structural similarity of NA,MA and NB,MB

Interaction Model

$\mathrm{ta}_{5} / \mathrm{tb}_{7}\left|\mathrm{ta}_{6} / \mathrm{tb}_{6}\right| \mathrm{ta}_{7} / \mathrm{tb}_{5}\left|\mathrm{ta}_{8} / \mathrm{tb}_{4}\right| \mathrm{ta}_{9} / \mathrm{tb}_{3}\left|\mathrm{ta}_{10} / \mathrm{tb}_{2}\right| \mathrm{ta}_{11} / \mathrm{tb}_{4}$
Interacting residue pairs

Predicted interfacial residues

Evaluate based on five measures:

-SIM: structural similarity of NA,MA and NB,MB
-SIZ (number) COV (fraction) of interaction pairs can be aligned anywhere

- OS subset of SIZ at interface
- OL number of aligned pairs at interface

"The final two scores reflect whether the residues that appear in the model interface have properties consistent with those that mediate known PPIs (for example, residue type, evolutionary conservation, or statistical propensity to be in protein-protein interfaces)." ????

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
2. Find structural neighbors $\left(\mathrm{NA}_{\mathrm{i}}, \mathrm{NB}_{\mathrm{i}}\right)($ avg:1,500 neighbors/structure)
3. Look for structure of a complex containing structural neighbors
4. Align sequences of MA,MB to NA,NB based on structure
5. Compute five scores
6. Train Bayesian classifier using "gold standard" interactions Structure-based prediction of protein-protein interactions on a genome-wide scale Nature 490, 556-560 (25 October 2012) doi:10.1038/nature11503

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Zhang, Qiangfeng Cliff, Donald Petrey, et al. "Structure-based Prediction of Protein-protein Interactions on a Genome-wide Scale." Nature 490, no. 7421 (2012): 556-60.

1. Find homologous proteins of known structure (MA,MB)
2. Find structural neighbors $\left(\mathrm{NA}_{\mathrm{i}}, \mathrm{NB}_{\mathrm{i}}\right)($ avg: 1,500 neighbors/structure)
3. Look for structure of a complex containing structural neighbors
4. Align sequences of MA,MB to NA,NB based on structure 5. Compute five scores
5. Train Bayesian classifier using "gold standard" interactions We will examine Bayesian classifiers soon

Outline

- High-throughput measurement of proteinprotein interactions
- Estimating interaction probabilities
- Bayes Net predictions of protein-protein interactions

Detecting protein-protein interactions

What are the likely false positives?

What are the
likely false negatives?

Courtesy of Macmillan Publishers Limited.
Used with permission.
Source: Kumar, Anuj, and Michael Snyder. "Proteomics:
Protein Complexes take the Bait." Nature 415, no. 6868
(2002): 123-4.

Gavin, A.-C. et al. Nature 415, 141-147 (2002).

Ho, Y. et al. Nature 415, 180-183 (2002).

Mass-spec for protein-protein interactions

- Extremely efficient method for detecting interactions
- Proteins are in their correct subcellular location.

Limitations?

Mass-spec for protein-protein interactions

- Extremely efficient method for detecting interactions
- Proteins are in their correct subcellular location.

Limitations?

- overexpression/tagging can influence results
- only long-lived complexes will be detected

Tagging strategies

Gavin et al. (2002) Nature.

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Gavin, Anne-Claude, Markus Bösche, et al. "Functional Organization of the Yeast Proteome by Systematic Analysis of Protein Complexes." Nature 415, no. 6868 (2002): 141-7.
TAP-tag (Endogenous protein levels)
Tandem purification

1. Protein A-IgG purification
2. Cleave TEV site to elute
3. CBP-Calmodulin purification
4. EGTA to elute

Ho et al. (2002) Nature over-expressed proteins and used only one tag.

Yeast two-hybrid

Transcription

Reporter gene

Courtesy of BioTechniques. Used with permission.
Source: Ratushny, Vladimi, and Erica A. Golemis. "Resolving the Network of Cell Signaling Pathways using the Evolving Yeast Two-hybrid System." Biotechniques 44, no. 5 (2008): 655. How does this compare to

Biotechniques. 2008 Apr;44(5):655-62. Ratushny V, Golemis E.
mass-spec based approaches

Courtesy of BioTechniques. Used with permission.
Source: Ratushny, Vladimi, and Erica A. Golemis. "Resolving the Network of Cell Signaling Pathways using the Evolving Yeast Two-hybrid System." Biotechniques 44, no. 5 (2008): 655.

Biotechniques. 2008 Apr;44(5):655-62. RatushnyV , Golemis E.
-Does not require purification - will pick up more transient interactions.
> -Biased against proteins that do not express well, or are incompatible with the nucleus

Outline

- Estimating interaction probabilities
- Bayes Net predictions of protein-protein interactions

Error Rates

- How can we estimate the error rates?

True positives and false positives

Error Rates

Data Integration

Fraction of consensus present in gold standard=I/II

Data Integration

I =True
positives from gold standard

II=Consensus
true positives

Gold standard

Mix of
true and false positives

Fraction of consensus present in gold standard=I/II

Data Integration

I =True
positives from gold standard

II=Consensus
true positives

Gold standard

Define: IV =
true positives

$$
V=
$$

false
positives

Fraction of consensus present in gold standard=I/II

Data Integration

$\mathrm{I}=$ True
positives
from
gold standard
II=Consensus true positives

II=Consensus
true positives

Assume

I/II=III/IV

Fraction of consensus present in gold standard=I/II

Estimated Error Rates

Courtesy of BioMed Central Ltd. Used with permission. Source: Hart, G. Traver, Arun K. Ramani, et al. "How Complete are Current Yeast and Human Proteininteraction Networks." Genome Biology 7, no. 11 (2006): 120.

Table 1

Dataset	Number of interactions	$\begin{aligned} & \mathrm{De} \\ & \text { rat } \end{aligned}$	ived false-positive $e^{*}(\%)$	Publist $(\%)$	ed false-positive rate	Average false-positive rate (\%)
Uetz et al. [35]	854	46	[32]	$\begin{aligned} & 32[24 \\ & {[42]} \end{aligned}$	t,47 [44], 50 [37], 51	45
Ito [36]	4,393	89	[32]	$\begin{aligned} & 71[24 \\ & {[44]} \end{aligned}$	t, 78 [41], 85 [37], 91	83
Gavin et al. [16]	3,180	68	[32]	$\begin{aligned} & 14 \\ & \text { bound } \end{aligned}$	$\begin{aligned} & t, 22[4],<72 \text { (upper } \\ & 20]) \end{aligned}$	35
Ho et al. [17]	3,618	83	[32], 81, 82, 80	$\begin{aligned} & 55[24 \\ & [20]) \end{aligned}$	t, <97 (upper bound	76
Jansen et al. [22]	15,922	81	79	-		80
Gavin et al. [27]	18,137	78	82, 86 ${ }^{\text {\% }}$	-		82
Krogan et al. [28]	14,317 (7,123 core)	$\begin{aligned} & 75 \\ & 37 \end{aligned}$	$\begin{aligned} & 79,66 \neq(59,65, \\ & \text { core }) \end{aligned}$	-		73 (54 core)
Overall	51,419					72
*This interaction assay false-positive rate is taken from D'haeseleer and chulch [32] or derived using the method therein. Multiple values derive from choosing either the GRID [2] or MIPS [33] reference sets. \#This interaction assay false-positive rate is calculated with the EPR server of Deane et a/. [42]. +The mean of four values estimated from Table S 3 of Lee et al. [24] by fitting the interaction set as a linear combination of true-positive (small scale interactions) and false-positive (random pairs) interactions.						
Hart et al. Genome Biology 2006 7:120 doi:10.1186/gb-2006-7-11-120						

Table 3				
Human protein-interaction assay false-positive rates: human datasets				
Dataset	Number of unique interactions	Derived false-positive rates* (\%)	Published false-positive rates (\%)	Average false-positive rates (\%)
Lehner and Fraser [40]	58,700 (9,396 core)	$\begin{aligned} & 96,94, ~ \\ & \text { core) } \end{aligned}$		94 (79 core)
Rhodes et ${ }^{\text {al. }}$ [23]	38,379	87, 86, 33	-	85
Stelzl et al. [15]	3,150 (902 core)	98, 98 (94,95 core)	70 [45]	98 (86 core)
Rual et ${ }^{\text {al. [14] }}$	2,611	87,93	8-66[14] ${ }^{+}$, 54 [45]	58
Overall	100,242			90
*This interaction assay false-positive rate is derived using 20,296 unique interactions from HPRD [54], BIND [55], Re, choices of comparison sets. ${ }^{\dagger}$ A range of six values (mean set CCSB-HI1 as a linear combination of true positive (LCI he method of D'haeseleer and Church [32] and a reference set of ctome [56], and Ramani et a/. [49]. Multiple values derive from different 8%) estimated from Table 1 of (ual et $a /$. [14] by fitting the interaction ble) interactions.				
Hart et al. Genome Biology 2006 7:120 doi:10.1186/gb-2006-7-11-120				

Courtesy of BioMed Central Ltd. Used with permission.
Source: Hart, G. Traver, Arun K. Ramani, et al. "How Complete are Current Yeast and Human Protein interaction Networks." Genome Biology 7, no. 11 (2006): 120.

Finding real interactions

- Take only those that are reported by >1 method?
- Filter out "sticky" proteins?
- Estimate probability of each interaction based on data.
- Use external data to predict

Note: log-log plot!

> Courtesy of Macmillan Publishers Limited. Used with permission. Source: Von Mering, Christian, Roland Krause, et al. "Comparative Assessment of Large-scale Data Sets of Protein-protein Interactions." Nature 417, no. 6887 (2002): 399-403.

Finding real interactions

- Estimate probability of each interaction based on data.
- How can we compute $P($ real_PPI \mid Data $)$?

Data $=($ two _ hybrid, mass _ spec, co _evolution, co _expression, ...)
or
Data = (mass_spec_expt_1,mass_spec_expt_2,...)

Bayes Rule

posterior likelihood prior

Naïve Bayes Classification

posterior
likelihood
prior

$$
P(\text { true_PPI } \mid \text { Data })=\frac{P(\text { Data } \mid \text { true_PPI }) P(\text { true_PPI })}{P(D)}
$$

likelihood ratio $=$ ratio of posterior probabilities
$\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PI } \mid \text { Data })}=\frac{P(\text { Data } \mid \text { true_PPI }) P(\text { true_PPI })}{P(\text { Data } \mid \text { false_PPI }) P(\text { false_PPI })}$
if >1 classify as true
if < 1 classify as false

likelihood ratio =

$$
\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}=\frac{P(\text { Data } \mid \text { true_PPI }) P(\text { true_PPI })}{P(\text { Data } \mid \text { false_PPI }) P(\text { false_PPI })}
$$

log likelihood ratio =

$\log \left[\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}\right]=\log \left[\frac{P(\text { true_PPI })}{P(\text { false_PPI })}\right]+\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right.$
Prior probability is the same for all interactions
--does not affect ranking

$$
\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}=\frac{P(\text { Data } \mid \text { true_PPI }) P(\text { true_PPI })}{P(\text { Data } \mid \text { false_PPI }) P(\text { false_PPI })}
$$

log likelihood ratio $=$
$\log \left[\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}\right]=\log \left[\frac{P(\text { true_PPI })}{P(\text { false_PII })}\right]+\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right.$
Prior probability is the same for all interactions
Ranking function $=\log \left[\frac{P(\text { Data } \mid \text { true_P } P \text {--does not affect ranking }}{P(\text { Data } \mid \text { false_PPI })}\right]$

Ranking function =

$$
\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right]
$$

We assume the observations are independent (we'll see how to handle dependence soon)

Ranking function =

$\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right]=\prod_{i}^{M} \frac{P\left(\text { Observation }_{i} \mid \text { true_ }_{\text {_ }} \text { PPI }\right)}{P\left(\text { Observation }_{i} \mid \text { false_PPI }\right)}$
We assume the observations are independent
(we'll see how to handle dependence soon)

Ranking function =

$\log \left[\frac{P\left(\text { Data } \mid \text { true__PI }^{2}\right)}{P(\text { Data } \mid \text { false_PPI })}\right]=\prod_{i}^{M} \frac{P\left(\text { Observation }_{i} \mid \text { true_PPI }\right)}{P\left(\text { Observation }_{i} \mid \text { false_PPI }\right)}$

We assume the observations are independent (we'll see how to handle dependence soon)

We can compute these terms if we have a set of highconfidence positive and negative interactions.

Exactly how we compute the terms depends on the type of data.

For affinity purification/mass spec. see
Collins et al. Mol. Cell. Proteomics 2007 http://www.mcponline.org/content/6/3/439.long

Instead of requiring an interaction to be detected in all assays, we can rank by
 $P($ true_PPI \mid Data $)$

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Von Mering, Christian, Roland Krause, et al. "Comparative Assessment of Large-scale Data Sets of Protein-protein Interactions." Nature 417, no. 6887 (2002): 399-403.

ROC curve
A

True positives = ?

True negatives = ?
© American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

ROC curve

R
© American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded from our Creative Commons license.
For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces Cerevisiae." Molecular \& Cellular Proteomics 6, no. 3 (2007): 439-50.

> Compute using highConfirence negatives FP/(TN+FP)

ROC curve

ROC curve

Error rate equivalent to literature curated

Literature curated

 (excluding 2-hybrid)R © American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded from our Creative Commons license.

Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces Cerevisiae." Molecular \&

Collins et al. Mol. Cell. Proteomics 2007

ROC curve

R © American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Collins, Sean R., Patrick Kemmeren, et al. "Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces Cerevisiae." Molecular \& Cellular Proteomics 6, no. 3 (2007): 439-50.

Compute using highconfidence negatives
FP/(TN+FP)

ROC curve

Outline

- Bayes Net predictions of protein-protein interactions

Bayesian Networks

A method for using probabilities to reason

In Biology

- Gene regulation
- Signaling
- Prediction

Bayesian Networks

- Bayesian Networks are a tool for reasoning with probabilities
- Consist of a graph (network) and a set of probabilities
- These can be "learned" from the data

Bayesian Networks

Predict unknown variables from observations
© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

A "natural" way to think about biological networks.

Bayesian Networks

© American Association for the Advancement of Science. All rights reserved.
This content is excluded from our Creative Commons license. For more
information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

Courtesy of Macmillan Publishers Limited. Used with permission.
Source: Yang, Xia, Joshua L. Deignan, et al. "Validation of Candidate Causal Genes for Obesity that Affect Shared Metabolic Pathways and Networks." Nature genetics 41, no. 4 (2009): 415-23.

Bayesian Networks

- Complete joint probability tables are large and often unknown
- N binary variables $=2^{\mathrm{N}}$ states
- only one constraint (sum of all probabilities $=1$)
$=>2^{\mathrm{N}}-1$ parameters

Graphical Structure Expresses our Beliefs

Graphical Structure Expresses our

 Beliefs

Graphical Structure Expresses our

Naïve Bayes assumes all observations are independent

Graphical Structure Expresses our

Beliefs

Graphical Structure

In a Bayesian Network, we don't need the full probability distribution.

A node is independent of its ancestors given its parents.

For example:
The activity of a gene does not depend on the activity of TF A1 once I know TF B2.

Automated Admissions Decisions

Prediction: we observe the "causes" (roots/ parents) and want to predict the "effects" (leaves/children).

Given Grades, GREs will we admit?

Inference: we observe the "effects" (leaves/ children) and want to infer the hidden values of the "causes" (roots/parents)

You meet an admitted the student. Is s/he smart?

Automated Admissions Decisions

Making predictions/inferences requires knowing the joint probabilities:

P(admit, grade inflation, smart, grades, GREs)

We will find conditional probabilities to be very useful

Automated Admissions Decisions

Joint Probability

S	G (above threshold)	P(S,G)
F	F	0.665
F	T	0.035
T	F	0.06
T	T	0.24

Conditional Probability

S	$P(G=F \mid S)$	$P(G=T \mid S)$
F	0.95	0.05
T	0.2	0.8
$P(S=F)=0.7$	$P(S=T)=0.3$	

Automated Admissions Decisions

"Explaining Away"

$p\left(C_{1}=H\right)=p\left(C_{1}=T\right)=.5$

$\mathrm{p}\left(\mathrm{C}_{2}=\mathrm{H}\right)=\mathrm{p}\left(\mathrm{C}_{2}=\mathrm{T}\right)=.5$

C_{1}	C_{2}	Score
H	H	1
T	T	1
H	T	0
T	H	0

Does the prob. that $\mathrm{C}_{1}=\mathrm{H}$ on depend on whether $\mathrm{C}_{2}=\mathrm{T}$?
If we know the score, then our belief in the state of C1 is influenced by our belief in the state C2.

$$
p\left(C_{2}=H \mid S=1, C_{1}=T\right)=\frac{p\left(C_{2}=H, S=1, C_{1}=T\right)}{p\left(S=1, C_{1}=T\right)}=0
$$

How do we obtain a BN?

- Two problems:
- learning graph structure
- NP-complete
- approximation algorithms
- probability distributions

Learning Models from Data

- Assume we know the structure, how do we find the parameters?
- Define an objective function and search for parameters that optimize this function.

Learning Models from Data

- Two common objective functions
- Maximum likelihood:
- Define the likelihood over training data $\left\{X_{i}\right\}$:

$$
\begin{aligned}
& L(\theta)=P(\text { Data } \mid \theta)=\sum_{i}^{N} P(X i \mid \theta) \\
& \theta_{M L}=\arg \max _{\theta} L(\theta)=\arg \max _{\theta} P(\text { Data| } \mid \theta)
\end{aligned}
$$

- Maximum posterior:

$$
\theta_{M A P}=\arg \max _{\theta} P(\theta \mid \text { Data })=\arg \max _{\theta} \frac{P(\text { Data } \mid \theta) P(\theta)}{P(D)}
$$

- Good search algorithms exist:
- Gradient descent, EM, Gibbs Sampling, ...

Learning Models from Data

Learning Models from Data

- Searching for the BN structure: NP-complete
- Too many possible structures to evaluate all of them, even for very small networks.
- Many algorithms have been proposed
- Incorporated some prior knowledge can reduce the search space.
- Which measurements are likely independent?
- Which nodes should regulate transcription?
- Which should cause changes in phosphorylation?

Resources to learn more

- Documentation download, bibliography
- An applet that runs the system in your browser
- A paper describing the algorithm used by JavaBaves (compressed version)
- An embeddable version of the inference engine in JavaBaves

JavaBayes

Bayesian Networks in Java

© Fabio Gagliardi Cozman, 1998-2001
fgcozman@usp.br, http://www.cs.cmu.edu/~fgcozman/home.html
Escola Politécnica, University of São Paulo
© Fabio Gagliardi Cozman. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Kevin Murphy’s tutorial: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html

A worked "toy" example

Best to work through on your own

Chain Rule of Probability for

$$
\begin{aligned}
P(S, G, R, D) & =P(S) P(G \mid S) P(R \mid G, S) P(A \mid S, G, R) \\
& =P(S) P(G \mid S) P(R \mid S) P(A \mid G, R) \quad \text { (why?) }
\end{aligned}
$$

(because of conditional independence assumption)

Prediction with Bayes Nets

(

$$
\begin{aligned}
& P(A=T \mid S=T)=\sum_{G=F, T} \sum_{R=F, T} P(G \mid S=T) P(R \mid S=T) P(A=T \mid G, R) \\
& =(0.8)(0.2)(0.1)+(0.8)(0.8)(0.2)+(0.2)(0.2)(0.5)+(0.2)(0.8)(0.8)=.29 \\
& F F \quad F \quad T \quad T \quad T
\end{aligned}
$$

Inference with Bayes Nets

$$
P(S=T \mid A=T)=P(S=T, A=T) / P(A=T)
$$

Or, using Bayes Rule:

$$
=P(S=T) P(A=T \mid S=T) / P(A=T)
$$

$$
P(S=T)=0.5
$$

$P(A=T \mid S=T)$ calculated on previous slide $=.29$
$P(A=T \mid S=F)=.14$
$P(A=T)=\sum_{S=F, T} \sum_{G=F, T} \sum_{R=F, T} P(S) P(G \mid S) P(R \mid S) P(A=T \mid G, R)$
$=P(S=T) P(A=T \mid S=T)+P(S=F) P(A=T \mid S=F)=0.21$
$\mathrm{P}(\mathrm{S}=\mathrm{T})=0.5, \mathrm{P}(\mathrm{S}=\mathrm{F})=0.5, \mathrm{P}(\mathrm{A}=\mathrm{T} \mid \mathrm{S}=\mathrm{F})$ calculated analogously to $\mathrm{P}(\mathrm{A}=\mathrm{T} \mid \mathrm{S}=\mathrm{T})$

Inference with Bayes Nets

If a student is not admitted, is it more likely they had bad GREs or bad grades?

Compute $P(R=F \mid A=F)$ and $P(G=F \mid A=T)$

Tedious but straightforward to compute

$$
\begin{aligned}
& P(R=F \mid A=F)=P(R=F, A=F) / P(A=F)=\left[\sum \sum_{G F, T} P=F T\right. \\
&P(S) P(G=F) P(R) P(A=F)] / P(A=F) \\
& P(A=F)=\sum \sum \sum P(S) P(G \mid S) P(R \mid S) P(A=T \mid G, R) \text { (as before) }
\end{aligned}
$$

```
\[
\mathrm{P}(\mathrm{G}=\mathrm{F} \mid \mathrm{A}=\mathrm{T})=. \underline{92}=1.6
\]
\[
P(R=F \mid A=F) \quad .56
\]
```


End of worked example

Goal

- Estimate interaction probability using
- Affinity capture
- Two-hybrid
- Less physical data

Properties of real interactions: correlated expression Expression Profile Reliability (EPR)

© American Society for Biochemistry and Molecular Biology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Deane, Charlotte M., Łukasz Salwiński, et al. "Protein Interactions Two Methods for Aassessment of the Reliability of High Throughput Observations." Molecular \& Cellular Proteomics 1, no. 5 (2002): 349-56.

Note: proteins involved in "true" proteinprotein interactions have more similar mRNA expression profiles than random pairs. Use this to assess how good an experimental set of interactions is.
d = "distance" that measures the difference between two mRNA expression profiles

Co-evolution

Which pattern below is more likely to represent a pair of interacting proteins?

Source: Cokus, Shawn, Sayaka Mizutani, et al. "An Improved Method for Identifying Functionally
Linked Proteins using Phylogenetic Profiles." BMC Bioinformatics 8, no. Suppl 4 (2007): S7.

Rosetta Stone

- Look for genes that are fused in some organisms
- Almost 7,000 pairs found in E. coli.
$->6 \%$ of known interactions can be found with this method
- Not very common in eukaryotes

Integrating diverse data

A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data

Ronald Jansen, ${ }^{1 *}$ Haiyuan Yu, ${ }^{1}$ Dov Greenbaum, ${ }^{1}$ Yuval Kluger, ${ }^{1}$
Nevan J. Krogan, ${ }^{4}$ Sambath Chung, ${ }^{1,2}$ Andrew Emili, ${ }^{4}$ Michael Snyder, ${ }^{2}$ Jack F. Greenblatt, ${ }^{4}$ Mark Gerstein ${ }^{1,3} \dagger$

SCIENCE VOL 30217 OCTOBER 2003

Advantage of Bayesian Networks

- Data can be a mix of types: numerical and categorical
- Accommodates missing data
- Give appropriate weights to different sources
- Results can be interpreted easily

Requirement of Bayesian Classification

- Gold standard training data
- Independent from evidence
- Large
- No systematic bias

Positive training data: MIPS

- Hand-curated from literature

Negative training data:

- Proteins in different subcellular compartments

Integrating diverse data

Data type	Dataset		\# protein pairs	Used for ...
Experimental interaction data	In-vivo pulldown	Gavin et al.	31,304	Integration of experimental interaction data (PIE)
		Ho et al.	25,333	
	Yeast twohybrid	Uetz et al.	981	
		Ito et al.	4,393	
Other genomic features	mRNA Expression	Rosetta compendium	19,334,806	De novo prediction (PIP)
		Cell cycle	17,467,005	
	Biological function	GO biological process	3,146,286	
		MIPS function	6,161,805	
	Essentiality		8,130,528	
Gold standards	Positives	Proteins in the same MIPS complex	8,250	Training \& testing
	Negatives	Proteins separated by localization	2,708,746	

[^0]

MIPS function \square
Essentiality

\square Data source

PIT

likelihood ratio =

$$
\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}=\frac{P(\text { Data } \mid \text { true_PPI }) P(\text { true_PPI })}{P(\text { Data } \mid \text { false_PPI }) P(\text { false_PPI })}
$$

log likelihood ratio $=$
$\log \left[\frac{P(\text { true_PPI } \mid \text { Data })}{P(\text { false_PPI } \mid \text { Data })}\right]=\log \left[\frac{P(\text { true_PPI })}{P(\text { false_PPI })}\right]+\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right.$
Prior probability is the same for all interactions
--does not affect ranking

Ranking function =

$\log \left[\frac{P(\text { Data } \mid \text { true_PPI })}{P(\text { Data } \mid \text { false_PPI })}\right]=\prod_{i}^{M} \frac{P\left(\text { Observation }_{i} \mid \text { true_ }_{i} P P I\right)}{P\left(\text { Observation }_{i} \mid \text { false_PPI }\right)}$

Protein pairs in the essentiality data can take on three discrete values (EE, both essential; NN, both non-essential; and NE, one essential and one not)

$$
\text { Likelihood }=\mathrm{L}=\frac{P(f \mid \text { pos })}{P(f \mid \text { neg })}
$$

Essentiality		\# protein pairs	Gold-standard overlap					$P(E s s \mid p o s)$	$P($ Ess \mid neg $)$	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l} \hline \text { sum(pos)/ } \\ \text { sum(neg) } \\ \hline \end{array}$					
\%	EE		384,126	1,114	81,924	1,114	81,924	0.014	$5.18 \mathrm{E}-01$	1.43E-01	3.6
者	NE	2,767,812	624	285,487	1,738	367,411	0.005	$2.90 \mathrm{E}-01$	$4.98 \mathrm{E}-01$	0.6	
${ }^{\text {\% }}$	NN	4,978,590	412	206,313	2,150	573,724	0.004	$1.92 \mathrm{E}-01$	$3.60 \mathrm{E}-01$	0.5	
	Sum	8,130,528	2,150	573,724	,	-		$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

Expression correlation		\# protein pairs	Gold standard overlap					$P($ exp\|pos)	$P(\exp \mid n e g)$	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l\|} \hline \text { sum(pos)/ } \\ \text { sum(neg) } \\ \hline \end{array}$					
$\begin{aligned} & \infty \\ & \frac{ \pm}{\pi} \\ & \gg \end{aligned}$	0.9		678	16	45	16	45	0.36	$2.10 \mathrm{E}-03$	$1.68 \mathrm{E}-05$	124.9
	0.8	4,827	137	563	153	608	0.25	$1.80 \mathrm{E}-02$	$2.10 \mathrm{E}-04$	85.5	
	0.7	17,626	530	2,117	683	2,725	0.25	$6.96 \mathrm{E}-02$	$7.91 \mathrm{E}-04$	88.0	
	0.6	42,815	1,073	5,597	1,756	8,322	0.21	$1.41 \mathrm{E}-01$	$2.09 \mathrm{E}-03$	67.4	
	0.5	96,650	1,089	14,459	2,845	22,781	0.12	$1.43 \mathrm{E}-01$	$5.40 \mathrm{E}-03$	26.5	
	0.4	225,712	993	35,350	3,838	58,131	0.07	$1.30 \mathrm{E}-01$	$1.32 \mathrm{E}-02$	9.9	
	0.3	529,268	1,028	83,483	4,866	141,614	0.03	$1.35 \mathrm{E}-01$	3.12E-02	4.3	
	0.2	1,200,331	870	183,356	5,736	324,970	0.02	$1.14 \mathrm{E}-01$	6.85E-02	1.7	
	0.1	2,575,103	739	368,469	6,475	693,439	0.01	$9.71 \mathrm{E}-02$	$1.38 \mathrm{E}-01$	0.7	
	0	9,363,627	894	1,244,477	7,369	1,937,916	0.00	1.17E-01	$4.65 \mathrm{E}-01$	0.3	
	-0.1	2,753,735	164	408,562	7,533	2,346,478	0.00	$2.15 \mathrm{E}-02$	1.53E-01	0.1	
	-0.2	1,241,907	63	203,663	7,596	2,550,141	0.00	$8.27 \mathrm{E}-03$	$7.61 \mathrm{E}-02$	0.1	
	-0.3	484,524	13	84,957	7,609	2,635,098	0.00	$1.71 \mathrm{E}-03$	$3.18 \mathrm{E}-02$	0.1	
	-0.4	160,234	3	28,870	7,612	2,663,968	0.00	$3.94 \mathrm{E}-04$	$1.08 \mathrm{E}-02$	0.0	
	-0.5	48,852	2	8,091	7,614	2,672,059	0.00	$2.63 \mathrm{E}-04$	$3.02 \mathrm{E}-03$	0.1	
	-0.6	17,423	-	2,134	7,614	2,674,193	0.00	$0.00 \mathrm{E}+00$	$7.98 \mathrm{E}-04$	0.0	
	-0.7	7,602	-	807	7,614	2,675,000	0.00	$0.00 \mathrm{E}+00$	$3.02 \mathrm{E}-04$	0.0	
	-0.8	2,147	-	261	7,614	2,675,261	0.00	$0.00 \mathrm{E}+00$	$9.76 \mathrm{E}-05$	0.0	
	-0.9	67	,	12	7,614	2,675,273	0.00	$0.00 \mathrm{E}+00$	$4.49 \mathrm{E}-06$	0.0	
Sum		18,773,128	7,614	2,675,273	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

MIPS function similarity		\# protein pairs	Gold standard overlap					$P($ MIPS \mid pos $)$	$P($ MIPS \mid neg $)$	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l\|} \hline \text { sum (pos)/ } \\ \text { sum(neg) }) \\ \hline \end{array}$					
$\begin{aligned} & \mathscr{y} \\ & \frac{3}{10} \\ & > \end{aligned}$	1 -- 9		6,584	171	1,094	171	1,094	0.16	2.12E-02	8.33E-04	25.5
	10-99	25,823	584	4,229	755	5,323	0.14	7.25E-02	$3.22 \mathrm{E}-03$	22.5	
	100-- 1000	88,548	688	13,011	1,443	18,334	0.08	$8.55 \mathrm{E}-02$	$9.91 \mathrm{E}-03$	8.6	
	1000-10000	255,096	6,146	47,126	7,589	65,460	0.12	7.63E-01	$3.59 \mathrm{E}-02$	21.3	
	$10000--\operatorname{lnf}$	5,785,754	462	1,248,119	8,051	1,313,579	0.01	$5.74 \mathrm{E}-02$	$9.50 \mathrm{E}-01$	0.1	
	Sum	6,161,805	8,051	1,313,579	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

GO biological process similarity		\# protein pairs	Gold standard overlap					P (GO\|pos)	P (GO\|neg)	L	
		pos	neg	sum(pos)	sum(neg)	$\begin{aligned} & \hline \operatorname{sum}(p o s) / \\ & \operatorname{sum}(n e g) \end{aligned}$					
	$1-9$		4,789	88	819	88	819	0.11	1.17E-02	$1.27 \mathrm{E}-03$	9.2
	10-99	20,467	555	3,315	643	4,134	0.16	$7.38 \mathrm{E}-02$	$5.14 \mathrm{E}-03$	14.4	
$\frac{3}{10}$	100--1000	58,738	523	10,232	1,166	14,366	0.08	$6.95 \mathrm{E}-02$	$1.59 \mathrm{E}-02$	4.4	
$\stackrel{1}{7}$	1000-10000	152,850	1,003	28,225	2,169	42,591	0.05	$1.33 \mathrm{E}-01$	$4.38 \mathrm{E}-02$	3.0	
	$10000--\operatorname{lnf}$	2,909,442	5,351	602,434	7,520	645,025	0.01	$7.12 \mathrm{E}-01$	$9.34 \mathrm{E}-01$	0.8	
	Sum	3,146,286	7,520	645,025	-	-	-	$1.00 \mathrm{E}+00$	$1.00 \mathrm{E}+00$	1.0	

© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

Fully connected \rightarrow
 Compute probabilities for all 16 possible combinations

Gavin (g)	$\begin{aligned} & \mathrm{Ho} \\ & \text { (h) } \end{aligned}$	$\begin{array}{\|l} \text { Uetz } \\ \text { (u) } \end{array}$	$\begin{aligned} & \text { Ito } \\ & \text { (i) } \end{aligned}$	\# protein pairs	Gold-standard overlap					$P(g, h, u, i \mid p o s)$	$P(g, h, u, i \mid n e g)$	L
					pos	neg	sum(pos)	sum(neg)	$\begin{array}{\|l} \hline \begin{array}{l} \text { sum(pos)/ } \\ \text { sum(neg) } \end{array} \\ \hline \end{array}$			
1	1	1	0	16	6	0	6	0		$7.27 \mathrm{E}-04$	$0.00 \mathrm{E}+00$	
1	0	0	1	53	26	2	32	2	16.0	3.15E-03	$7.38 \mathrm{E}-07$	4268.3
1	1	1	1	11	9	1	41	3	13.7	$1.09 \mathrm{E}-03$	$3.69 \mathrm{E}-07$	2955.0
1	0	1	1	22	6	1	47	4	11.8	$7.27 \mathrm{E}-04$	$3.69 \mathrm{E}-07$	1970.0
1	1	0	1	27	16	3	63	7	9.0	$1.94 \mathrm{E}-03$	$1.11 \mathrm{E}-06$	1751.1
1	0	1	0	34	12	5	75	12	6.3	$1.45 \mathrm{E}-03$	$1.85 \mathrm{E}-06$	788.0
1	1	0	0	1920	337	209	412	221	1.9	$4.08 \mathrm{E}-02$	$7.72 \mathrm{E}-05$	529.4
0	1	1	0	29	5	5	418	227	1.8	$6.06 \mathrm{E}-04$	$1.85 \mathrm{E}-06$	328.3
0	1	1	1	16		,	413	222	1.9	$1.21 \mathrm{E}-04$	$3.69 \mathrm{E}-07$	328.3
0	1	0	1	39	3	4	421	231	1.8	$3.64 \mathrm{E}-04$	$1.48 \mathrm{E}-06$	246.2
0	0	1	1	123	6	23	427	254	1.7	$7.27 \mathrm{E}-04$	$8.49 \mathrm{E}-06$	85.7
1	0	0	0	29221	1331	6224	1758	6478	0.3	$1.61 \mathrm{E}-01$	$2.30 \mathrm{E}-03$	70.2
0	0	1	0	730	5	112	1763	6590	0.3	$6.06 \mathrm{E}-04$	$4.13 \mathrm{E}-05$	14.7
0	0	0	1	4102	11	644	1774	7234	0.2	$1.33 \mathrm{E}-03$	$2.38 \mathrm{E}-04$	5.6
0	1	0	0	23275	87	5563	1861	12797	0.1	$1.05 \mathrm{E}-02$	$2.05 \mathrm{E}-03$	5.1
0	0	0	0	2702284	6389	2695949	8250	2708746	0.0	$7.74 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	0.8

[^1]

[^2]

Summary

- Structural prediction of protein-protein interactions
- High-throughput measurement of proteinprotein interactions
- Estimating interaction probabilities
- Bayes Net predictions of protein-protein interactions

MIT OpenCourseWare
http://ocw.mit.edu
7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational and Systems Biology Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: (C) American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
 Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein
 Interactions from Genomic Data." science 302, no. 5644 (2003): 449-53.

[^1]: © American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
 Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data."
 Science 302, no. 5644 (2003): 449-53.

[^2]: © American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
 Source: Jansen, Ronald, Haiyuan Yu, et al. "A Bayesian Networks Approach for Predicting Protein-protein Interactions from Genomic Data." Science 302, no. 5644 (2003): 449-53.

