

7.36/7.91/20.390/20.490/6.802/6.874

PROBLEM SET 4. Bayesian Networks, Refining Protein Structures in PyRosetta,

Mutual information of protein residues (21 Points)

Due: Thursday, April 17th at noon.

Python Scripts
All Python scripts must work on athena using /usr/athena/bin/python. You may not assume
availability of any third party modules unless you are explicitly instructed so. You are
advised to test your code on Athena before submitting. Please only modify the code between
the indicated bounds, with the exception of adding your name at the top, and remove any
print statements that you added before submission.

Electronic submissions are subject to the same late homework policy as outlined in the
syllabus and submission times are assessed according to the server clock. Any Python
programs you add code to must be submitted electronically, as .py files on the course
website using appropriate filename for the scripts as indicated in the problem set or in the
skeleton scripts provided on course website.

1

P1 - Bayesian Networks (7 points)

You are given two different Bayesian network structures 1 and 2, each consisting of 5 binary
random variables A, B, C, D, E. Each variable corresponds to a gene, whose expression can
be either “ON” or “OFF”.

Network 1 Network 2

(A – 2 points) In class, we covered the chain rule of probability for Bayes Nets, which allows
us to factor the joint probability over all the variables into terms of conditional probabilities.
For each of the following cases, factor P(A,B,C,D,E) according to the independencies
specified and give the minimum number of parameters required to fully specify the
distribution.

(i) A,B,C,D,E are all mutually independent
P(A,B,C,D,E) = P(A)P(B)P(C)P(D)P(E)
5 parameters (probability that each of the 5 genes is ON, independent of others)

(ii) A,B,C,D,E follow the independence assumptions of Network #1 above
P(A,B,C,D,E) = P(A)P(B)P(C|A)P(D|A,B)P(E|A,C,D)
16 parameters: 1 for P(A), 1 for P(B), 2 for P(C|A), 4 for P(D|A,B), and 8 for

P(E|A,C,D)

(iii) A,B,C,D,E follow the independence assumptions of Network #2 above
P(A,B,C,D,E) = P(A)P(B|A)P(C|A)P(D|A,B)P(E|D)
11 parameters: 1 for P(A), 2 for P(B|A), 2 for P(C|A), 4 for P(D|A,B), 2 for P(E|D)

(iv) no independencies
P(A,B,C,D,E) cannot be simplified
25 - 1= 31 parameters (there are 32 combinations of A,B,C,D,E, must sum to 1)

2

(B – 3 points) Using Network #2 and the probabilities given below, calculate the probability
of the following: ⎧

⎪ 0.1 A = OFF, B = OFF
P(A = ON) = 0.6

P(D = ON | A, B) = ⎨
⎪ 0.9 A = ON, B = OFF

P(B = ON | A) =
⎧
⎨
⎪

⎩⎪

0.1,

0.95,

A = OFF

A = ON ⎩

⎪
⎪

0.3
0.95

A = OFF, B = ON

A = ON, B = ON

⎧ ⎧⎪ 0.8, A = OFF ⎪ 0.8, D = OFF
P(C = ON | A) = ⎨ P(E = ON | D) = ⎨

⎪ 0.5, A = ON ⎪ 0.1, D = ON⎩ ⎩

(i) P(A=ON, B=ON, C=ON, D=ON, E=ON)
P(A=ON, B=ON, C=ON, D=ON, E=ON)

= P(A=ON)P(B=ON|A=ON)P(C=ON|A=ON)P(D=ON|A=ON,B=ON)P(E=ON|D=ON)

= (0.6)(0.95)(0.5)(0.95)(0.1)

= 0.0271

(ii) P(E = ON | A = ON)
B, D, and E are conditionally independent of C given A, so C drops out. Therefore, we

sum over the 4 {B, D} possibilities:
P(E == ON| A = ON) = ∑ P(E = ON|D)P(D | A = ON,B)P(B | A = ON)

B,D={ON,OFF}

Summing over the last column, we obtain P(E=ON | A = ON) = 0.13675.

3

B D P(B|A=ON) P(D|A=ON,B) P(E=ON|D) P(E=ON, B, D|A=ON)
ON ON 0.95 0.95 0.1 0.09025
ON OFF 0.95 0.05 0.8 0.038
OFF ON 0.05 0.9 0.1 0.0045
OFF OFF 0.05 0.1 0.8 0.004

P(A =ON | E =ON) = P(E =ON | A =ON)P(A =ON)
P(E =ON)

=
P(E =ON | A =ON)P(A =ON)

P(E =ON | A =ON)P(A =ON)+P(E =ON | A =OFF)P(A =OFF)

(iii) P(A = ON | E = ON)
By Bayes’ rule,

We already have P(E=ON | A=ON) from (ii), so we just need P(E=ON | A=OFF):

4

B D P(B|A=OFF) P(D|A=OFF,B) P(E=ON|D) P(E=ON, B, D|A=OFF)
ON ON 0.1 0.3 0.1 0.003
ON OFF 0.1 0.7 0.8 0.056
OFF ON 0.9 0.1 0.1 0.009
OFF OFF 0.9 0.9 0.8 0.648

P(A =ON|E =ON) = (0.13675)(0.6)
(0.13675)(0.6) + (0.716)(0.4)

= 0.2227

Summing over the last column, we obtain P(E=ON | A=OFF) = 0.716. Therefore

(C – 1 point) For the rest of this problem, you will be using the Python module Pebl
(https://code.google.com/p/pebl-project/), which provides an environment for learning the
structure of a Bayesian network. Just like PyRosetta, Pebl has been installed on Athena, and
we will provide instructions for how to complete this problem on Athena’s Dialup Service.
You are, of course, free to download Pebl yourself and complete the problem locally.

Log on to Athena’s Dialup Service:

ssh <your Kerberos username>@athena.dialup.mit.edu

Before running any Python scripts, use the following command to add the Athena Pebl
module to your PYTHONPATH:

export PYTHONPATH=/afs/athena/course/20/20.320/pythonlib/lib/python2.7/site-packages/

If you forget to do this, you will get
ImportError: No module named pebl

when you try to run the provided scripts. Additional information about Pebl and its modules
can be found here: https://pythonhosted.org/pebl/apiref.html#apiref .

You will also need to get the .zip containing the files for this problem in the course folder:

cd /afs/athena/course/7/7.91/sp_2014

cp bayesNetworks.zip ~

cd ~

unzip bayesNetworks.zip

cd bayesNetworks

We have provided you with a small subset of the microarray data that were published in a
2000 paper (Gasch et al. - http://www.ncbi.nlm.nih.gov/pubmed/11102521). Gasch et al.
explored gene expression changes in S. cerevisiae in response to a variety of environmental
stresses, such as heat shock and oxidative stress. We have given you geneExprData.txt,

which contains data for 12 of the genes included in the study, observed under these various
stress conditions.

We have also provided a simple script learnNetwork.py which will learn the network structure
that best explains these data, using Pebl’s greedy learner algorithm (see
https://pythonhosted.org/pebl/learner/greedy.html). From the folder containing
geneExprData.txt, run the script:

python learnNetwork.py geneExprData.txt network1

If you’ve done this correctly, a new folder called network1 will be created in your current
directory on Athena, containing an .html file and two more folders data and lib. If you are at
an Athena workstation, you can open and view the .html directly. If you’ve ssh’ed into
Athena from your own computer, you will need to copy the entire outFolderName to your local
computer using scp:

5

https://pythonhosted.org/pebl/learner/greedy.html
http://www.ncbi.nlm.nih.gov/pubmed/11102521
https://pythonhosted.org/pebl/apiref.html#apiref
https://code.google.com/p/pebl-project

<in a new Terminal on your computer, cd into your local computer’s directory where you want

to download the files>

scp –r <your Kerberos username>@athena.dialup.mit.edu:~/bayesNetworks/network1 .

Now click on the .html file to open it. Include a printout of the top scoring network with your
write-up or upload a photo of it to the Stellar online dropbox. What is its log score?

Log score = -1966.216

6

(D – 1 point) We have provided another data file, exprDataMisTCP1.txt, which is the same
as geneExprData.txt except the data for tcp1 has been removed.

(i) Before using Pebl to calculate the network, make a quick guess about how the network
might change in response to removing the tcp1 data.

We might assume that we will simply see edges from tcp1’s parents going directly to mcx1.
In other words, mcx1 expression would depend only on cct8 and cct4.

(ii) Now, use the learnNetwork.py script to learn a network for exprDataMisTCP1.txt:

python learnNetwork.py exprDataMisTCP1.txt network2

Again, if you ssh’ed into Athena, you will need to copy the network2 folder locally in order to
view it:

<in a new Terminal on your computer, cd into your local computer’s directory where you want

to download the PDF>

scp –r <your Kerberos username>@athena.dialup.mit.edu:~/bayesNetworks/network2 .

Include a printout of the top scoring network with your write-up or upload a photo of it to the
Stellar online dropbox. According to this network, which node(s) does the expression of mcx1
depend on? Is this consistent with your guess above? Briefly suggest a reason why you
might be observing this network in response to loss of tcp1 data.

7

When we lose the tcp1 data, we obtain a network in which mcx1 depends on a number of
other nodes, not just the parents of tcp1. Losing tcp1, brought together diverse sources of
information, makes all the relationships between mcx1 and ancestors of tcp1 more noisy, and
makes it harder to tell which are real and which aren’t – in this case, it appears that a number
of them have some contribution to the value of mcx1.

8

P2 – Refining Protein Structures in PyRosetta (7 points)

In this problem, you will explore refining protein structures using two methods discussed in
class: Energy Minimization and Simulated Annealing. To do this, we will use PyRosetta, an
interactive Python-based interface to the powerful Rosetta molecular modeling suite.

When implementing your solutions in the skeleton code provided, we encourage you to look
at the solutions from Problem Set 3 Question 3 as well as the PyRosetta documentation:
http://graylab.jhu.edu/~sid/pyrosetta/downloads/documentation/PyRosetta_Manual.pdf,
particularly Units 2 (Protein Structure in PyRosetta) and 3 (Calculating Energies in
PyRosetta), and the Appendix.

In the following, we will provide instructions on how to complete this problem on Athena’s
Dialup Service, where PyRosetta has previously been installed as a module for another
class.

Log onto Athena’s Dialup Service, either at a workstation on campus or from a Terminal on
your personal machine:

ssh <your Kerberos username>@athena.dialup.mit.edu

Once logged on, load the PyRosetta module with the following 2 commands:

cd /afs/athena/course/20/20.320/PyRosetta

source SetPyRosettaEnvironment.sh

If you log onto Athena to complete the problem at a future time, you will have to execute
these two commands again, otherwise you will get the following error:

ImportError: No module named rosetta

Now, head to the course’s Athena directory, copy the
pyRosetta_RefiningStructures.zip folder of files for this problem to your home
directory (~), and then unzip it in your home directory with the following commands:

cd /afs/athena/course/7/7.91/sp_2014

cp pyRosetta_RefiningStructures.zip ~

cd ~

 
unzip pyRosetta_RefiningStructures.zip

cd pyRosetta_RefiningStructures

9

http://graylab.jhu.edu/~sid/pyrosetta/downloads/documentation/PyRosetta_Manual.pdf

You should now be able to edit any of these files. Skeleton code is provided in
pyRosetta_1EK8.py. The 1EK8.clean.pdb file is a cleaned PDB file of the E. coli
ribosome recycling factor, while 1EK8.rotated.pdb is the same structure but with some
phi and/or psi angles rotated. In this problem, you will refine the 1EK8.rotated.pdb
structure using an Energy Minimization approach as well as a Simulated Annealing approach.

(A – 1 point) Complete the part_a_energy_minimization() function in
pyRosetta_1EK8.py to carry out a simple greedy energy minimization algorithm. Rather
than computing the gradient of the full energy potential, you should simply calculate the
energy of the structure for each of the residue’s phi and psi angles changed by ±1 degree,
and accept the structure with the lowest energy, continuing until the change in energy is less
than 1 (see the code for more specific details).

What are the starting and final energies of the structure? How many iterations until
convergence? If implemented correctly, a plot of the energy at each iteration
(energy_minimization_plot.pdf) will be made; upload it to the Stellar electronic
dropbox or include a printout of it with your write-up. Once finished with this, to cut down on
run-time for subsequent parts of the question you may want to comment out the lines
between ###### PART (A) ######## and ###### END PART (A) ########.

The starting energy is 37,278.5, and after 61 iterations the final energy is 188.9.

10

0 10 20 30 40 50 60 70

Iteration
0

5000

10000

15000

20000

25000

30000

35000

40000

E
ne

rg
y

Energy Minimization at each iteration

0 10 20 30 40 50 60 70

Iteration
0

5000

10000

15000

20000

25000

30000

35000

40000

E
ne

rg
y

Energy Minimization at each iteration

(B – 1 point) Now we’ll refine 1EK8.rotated.pdb through a Simulated Annealing
approach. For the initial iterations, we aim for an acceptance criterion of 50% for structures
that have twice the starting energy of 1EK8.rotated.pdb. What should we initially set kT
(henceforth simply referred to as the temperature since k, the Boltzmann constant, remains
the same) to be to achieve this acceptance rate?

The energy of 1EK8.rotated.pdb is initially Ei = 37,278.5, so an acceptance rate of 50%
corresponds to:
O.5 = e-(2Ed-Ed)/kT � - ln O.5 = Ed/kT � kT = -Ed/ ln O.5 �53,782.

(C – 2 points) Now let’s implement the core of the Simulating Annealing algorithm: making a
number of possible changes to the structure and accepting each according to the Metropolis
criterion. To do this, fill in onesetofMetropolismoves(), a function that is called by
part_c(); your implementation of onesetofMetropolismoves() should repeatedly call
make_backbone_change_metropolis(), which you should implement to make one phi
or psi angle perturbation drawn from a Normal(0, 20) distribution and accept or reject it
according to the Metropolis criterion (see the code for more specific details).

Finally, change kT_from_part_B = 1 at the bottom of the code to your answer from part
(B). If your implementation of the functions called by part_c() is correct,
energy_plot_metropolis.pdf will be produced, showing the energy of the structure at
each of the 100*number_of_residues iterations with your kT_from_part_B. Upload it to
the Stellar dropbox or include a printout of it with your writeup.

11

(D – 2 points) Finally, let’s implement an annealing schedule to make the Simulated
Annealing algorithm more realistic:

1. Start at the temperature calculated in part (B).
2. Perform 100*number_of_residues iterations with this kT.
3. Cut kT in half. Repeat step 2.
4. Continue halving until kT is less than 1. You should perform

100*number_of_residues iterations for the first kT value less than 1, and then stop.

Using the temperature calculated in part (B), how many kT halvings should you perform?

16 (53,782/216�O.82)

In the code, change number_of_kT_halvings = 1 to this value. Then complete the
part_d() function to implement the above annealing schedule (see the code for more
specific details). If your implementation is correct,
energy_plot_metropolis_part_d.pdf will be produced, showing the energy of the
structure at each of the 100*number_of_residues*(number_of_kT_halvings+1)
iterations with the kT at the end of each iteration set labeled on the x-axis. Upload this plot to
the Stellar dropbox or include a printout of it with your writeup. In no more than two
sentences, compare/contrast this Simulated Annealing plot with the Energy Minimization plot
from part (A). (Note: performing the algorithm with the computed number_of_kT_halvings
could take up to an hour, so it’s recommended that you test your code with

12

0 5000 10000 15000 20000

Iteration
0

50000

100000

150000

200000

250000

300000

350000

E
ne

rg
y

Energy of Metropolis Algorithm, kT=53782

number_of_kT_halvings=1 first to make sure there are no errors, and then change
number_of_kT_halvings to your calculated value to run the Simulated Annealing to
completion).

The Energy Minimization algorithm from part (A) is deterministic, constantly lowering the
energy and requiring fewer iterations since a change in the structure is always performed at
each iteration. The Simulated Annealing algorithm from part (D) is stochastic and sometimes
moves to higher energy states, requiring more iterations since many conformations are
sampled but only a small percentage are accepted by the Metropolis criterion.

13

82
.0

91
.0

45
.5

22
.8

61
.4

80
.7

40
.3

20
.2

10
.1

05
.0

52
.5

26
.3

13
.1 6.6 3.3 1.6 0.8

0

50000

100000

150000

200000

250000

300000

E
ne

rg
y

Energy of Metropolis Algorithm, initial kT=53782; 16 halvings of kT

53
7

26
8

13
4 67 33 16 8 4 2 1

kT for previous round

(E – 1 point) Finally, let’s evaluate the structures you’ve produced using two criteria:
(1) a simple count of the number of phi and psi angles that differ by more than 1

degree.
(2) the root-mean-square deviation (RMSD).

To calculate (1), you should complete the part_e_num_angles_different() function. A
PyRosetta function can be called to easily calculate (2) (hint: see the Appendix of the linked
PyRosetta Documentation).

Then fill out the table below. Which approach (Energy Minimization or Simulated Annealing)
appears to have done better here? Can you think of a scenario in which the other approach
would do better?

It appears that Energy Minimization resulted in a structure that is closer to 1EK8.clean.pdb
as measured by both the number of angles that differ by >1° as well as the RMSD. Since only
4 phi/psi angles were rotated in the 1EK8.rotated.pdb structure (and these were only off by
10° each), it’s not surprising that the deterministic energy minimization approach did well
because the nearest local minimum found by Energy Minimization is similar to the original
1EK8.clean.pdb structure. In contrast, the Simulated Annealing approach perturbed
almost all angles during random sampling, even most of the angles which were not initially
different between 1EK8.rotated.pdb and 1EK8.clean.pdb.

The Simulated Annealing approach would perform better than Energy Minimization when
there is a large conformational change with an energy barrier between the starting structure
and the globally lowest energy structure. In Energy Minimization, this barrier could not be
surmounted since only downward moves on the energy surface are made and the algorithm
would return a locally optimal structure that didn’t make the large conformational change to
get to the globally lowest energy structure. In contrast, it’s possible that the random sampling
in Simulated Annealing could sample something close to the globally lowest energy structure
and/or temporarily move to structures with higher energy on the path to overcome the barrier
and eventually settle in the globally lowest energy structure.

14

Difference between 1EK8.clean.pdb and:

 Number of phi and psi
angles that differ by >1° RMSD

1EK8.rotated.pdb 4 5.39
Energy Minimization

structure from part (A) 22 3.04

Simulated Annealing
structure from part (D)

361 (will vary since
Simulated Annealing is

stochastic)
36.23 (will vary)

��

P3. Mutual information of protein residues (7 points).

In this problem, you will explore the mutual information of amino acid residues in a Multiple
Sequence Alignment (MSA) of the Cys/Met metabolism PLP-dependent enzyme family
(http://pfam.sanger.ac.uk/family/PF01053#tabview=tab0). Skeleton code is provided in
mutual_info.py in Problem3.zip on Stellar. The full MSA, which you should use for all
of your answers, is cys_met.fasta. However, we have also provided you with a smaller file
containing the first ~1000 lines of the MSA (which you can use when developing and testing
your code to cut down on the run-time) as cys_met_shortened.fasta.

(A – 2 points) Open mutual_info.py and scan to the bottom (after
if __name__ == "__main__":) to get a feeling for what functions are executed and what
each function returns.
First, we’ll calculate the information content at each position of the alignment. What is
maximum information possible at one position (in bits), and what is the formula for
information that you will implement?

Maximum information possible: 4.32 bits. There are 20 possible states (amino acids) – the
maximum Shannon entropy (which is also the maximum information possible - realized if only
one state occurs with probability 1 and the other 19 with probability 0) is log2(20)≈4.32 bits.

Formula for information at a position: 4.32 + aa=l Paa log2 Paa, where Paa is the probability of
amino acid aa.

Now, complete the part_A_get_information_content() function in
mutual_info.py, and plot the information content at each position (see the code for more
specific details). The code can be run with the following command:

python mutual_info.py cys_met.fasta

What is the maximum information content, and what is the first position at which this

maximum information is attained?

The maximum information content at any position is 4.318 bits, and it is attained at position
1658 (well-represented position 367).

If you have matplotlib installed (you also can upload your code to Athena, which has
matplotlib installed), you can uncomment
plot_info_content_list(info_content_list), which will make 2 plots of the
information content at each position (one relative to the original MSA positions and a
condensed version relative to the well-represented position numbers); otherwise, make a plot
of the information content at each position with a tool of your choice. Upload one of the 2
plots (or your own custom one) to the Stellar electronic dropbox or include a printout of it with
your write-up.

15

http://pfam.sanger.ac.uk/family/PF01053#tabview=tab0

Information scatterplot

4

3

2

1

0
0 50 100 150 200 250 300 350

4.32

3.92

3.53

3.14

2.74

2.35

1.96

1.56

1.17

0.78

0.38

In
fo

rm
at

io
n

In
fo

rm
at

io
n

Well-represented Position

Information scatterplot

4

3

2

1

0

4.32

3.92

3.53

3.14

2.74

2.35

1.96

1.56

1.17

0.78

0.38
0 200 400 600 800 1000 1200 1400 1600

Original MSA Position

16

(B – 3 points) Now let’s calculate the mutual information between all pairs of well-
represented positions in the alignment. Complete the function
get_MI_at_pairs_of_positions() to get the mutual information at each pair of
positions, and plot the mutual information at each pair of positions (if you have matplotlib
installed, you can uncomment the
plot_mutual_information_dict(mutual_information_dict) function provided to
make 2 heatmap plots, one relative to the original MSA positions, and a condensed one
relative to the “well-represented” position number).

What is the maximum mutual information, and at what pair of positions is this value
achieved? Upload the heatmap plot with the well-represented positions to the Stellar Problem
Set 4 electronic dropbox or include a printout of it with your write-up.

The maximum mutual information is 1.212, and it is attained between positions (339, 1131) of
the original MSA (well-represented position #s (50, 229)).

The condensed heatmap of mutual information for position pairs indexed relative to the “well
represented positions”:

Mutual information heatmap

W
el

l-
re

pr
es

en
te

d
Po

si
ti

on
 2

350

300

250

200

150

100

50

0
0 50 100 150 200 250 300 350

Well-represented Position 1

1.21

1.09

0.97

0.85

0.73

0.61

0.48

0.36

0.24

0.12

0.00

17

The heatmap of mutual information for position pairs indexed relative to positions in the
original multiple sequence alignment:

O
ri

gi
na

l M
SA

 P
os

it
io

n
2

1600

1400

1200

1000

800

600

400

200

Mutual information heatmap

1.21

1.09

0.97

0.85

0.73

0.61

0.48

0.36

0.24

0.12

0.00
200 400 600 800 1000 1200 1400 1600

Original MSA Position 1

18

(C – 2 points) Now’s lets see if we can make sense of why the positions with the highest
mutual information are as such. Complete the function
part_c_get_highest_MI_block_of_10() to find the 10 consecutive well-represented
positions with the highest average mutual information. If your function is implemented
successfully, the code will subsequently print out the human sequence (including gaps and
intervening non-well-represented positions) corresponding to this block. What is it?

N---R--L-R--F--L--Q--N-SL

The human entry (CGL_HUMAN/19-395) in the multiple sequence alignment
cys_met.fasta corresponds to 1QGN (Figures 1-5) in the paper “New methods to measure
residues coevolution in proteins” by Gao et al. BMC Bioinformatics 2011, 12:206
(http://www.biomedcentral.com/content/pdf/1471-2105-12-206.pdf). By matching the printed-
out, gapped sequence in the MSA human entry to the ungapped human sequence (Isoform 1
of http://www.uniprot.org/uniprot/P32929), determine which positions of the human protein
correspond to the highest MI block. Are these positions in any of the figures from the paper?
Based on the structure of the enzyme, why would you expect these positions to have high
mutual information?

As a reminder, be sure that your final answers are for cys_met.fasta (not
cys_met_shortened.fasta).

By matching the “NRLRFLQNSL” residues with the Uniprot ungapped human sequence, we
see that these are residues 234-243. In particular, the first “L” corresponds to human protein
residue 236, which is the red residue in Figure 4 of the Gao et al. paper. The structure in that
figure shows that residue 236 is close proximity to many other residues in the tertiary
structure. Thus, if residue 236 mutates, we expect compensatory changes in the nearby
residues to accommodate the new geometry of the site, explaining why residue 236 covaries
and has high mutual information with others nearby in the protein.

19

http://www.uniprot.org/uniprot/P32929
http://www.biomedcentral.com/content/pdf/1471-2105-12-206.pdf

MIT OpenCourseWare
http://ocw.mit.edu

7.91J / 20.490J / 20.390J / 7.36J / 6.802J / 6.874J / HST.506J Foundations of Computational
and Systems Biology
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

