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Assume, for both problems, that we are dealing with two DNA sequences of length n and m respec-
tively: z1,22,...,2p and Y1, 92, - . -, Ym.-

Problem 1

An intercalation of two sequences is a list (without gaps) combining both their elements without gaps; for

example, z1, %2, Y1, T3,Y2,Y3, Y4, - - .. The number of ways of intercalating two sequences of lengths n and m

(you may assume that m < n) to give a single sequence of length m + n, while preserving the order of the

symbols in each, is (™F™).

a. By taking alternating symbols from the upper and lower sequences in an alignment, then discarding
the gap characters, show that there is a one-to-one correspondence between gapped alignments of the
two sequences and intercalated sequences of the type described in the previous problem.

m+n) _ (m+n)!

(Thus, by a simple argument, the number of potential alignments is ("™ - This is number is

approximated in the lecture notes, using Stirling’s formula, by \2/;" )

Problem 2

The approximation above suggests that a “brute force” search through all ( alignments would require
searching a prohibitively large number of possible alignments. How can we avoid this problem?

In class (Lecture 2) we saw a tractable algorithm for finding the optimal global alignment of two se-
quences. This algorithm, called Needleman-Wunsch, relies on a score function F' of two arguments. The
value of F'(i, j) is the score of the optimal sub-alignment between sequences z1,...,2; and yi,...,y;. There-
fore, by definition, F'(n,m) is the score of the optimal alignment between the two original sequences. (This
explains why we started our track-back for Needleman-Wunsch in the lower-right corner of the matrix in
the lecture notes).

The function F' depends, first, on the substitution matrix s and gap penalty d. The substitution matrix s
is a simple function that scores both matches and mismatches. The value of s(i, j) is the score that results
from matching «; to y;. In a very simple example, we might simply give one score if z; = y;, and another if
x; # y;: our “match” and “mismatch” scores. The BLOSUM and PAM matrices are more complex examples
of the same kind of function, used to align proteins.

The function F is also interesting because it has a recursive structure: its value for any (i, j) pair depends
on its value for some other (i', j') pair(s).
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This function has a particularly nice recursive structure: values of F(i,j) depend on values of F for
other, smaller, i and j. In other words, the optimal solution to the problem depends on the optimal solutions
to one or more sub-problems. Problems with solutions structured in this way can be solved by a technique
known as dynamic programming.

Dynamic programming builds a table, from the bottom up, of the solutions to all the possible sub-
problems. Since any sub-problem in this case corresponds to a pair i < n and j < m, there are at most n?
distinct sub-problems - a significant improvement over ("™*")! We built this kind of table in the lecture notes



using a matrix of entries, one for each (7, j) pair. The value of an entry in the matrix depends on the values
of up to three of its neighbors, reflecting the three terms in the maximization above (eq 1). Replacing the
max with an argmax (represented by an — in the lecture notes) allows us to trace-back the actual alignment
which produced the optimal score.

Our use of a single gap parameter d here implies a simple model of gap scoring: “linear gap scoring.”
We also covered a more complex score function, “affine gap scoring,” in class. Affine gap scores take the
form —e — (g — 1)d, as discussed in the notes; dynamic programming can also be used for affine gap scores,
although that requires an additional level of bookkeeping than we require here. One can also imagine even
more complex gap-scoring models, although not all of them are compatible with a dynamic programming
approach.

For this problem, please:

e Calculate the alignment-score matrix for the optimal alignment of the DNA sequences GAATACGGAT
and GTAATAGGT, scoring +2 for a match, —1 for a mismatch, and with a linear gap penalty of d = 2.

Report the matrix of scores,

... the optimal score,

... and an alignment of the two sequences with that score.

Draw arrows in your matrix to represent the route taken by arg max for tracing back the optimal
alignment.

As an alternative, you may (if you feel comfortable) code the algorithm in Matlab (or a reasonable
environment, negotiated with the TA) and give both the code and its output as an answer to this
problem.

e In general, it may be that the arg max for eq. 1 is not unique; you may represent this in your table with
a double-arrow. What phenomenon does this reflect? Is this necessarily a problem with the alignment
algorithm, that it sometimes allows these degeneracies?

e How sensitive is the result of your algorithm to the alignment scoring parameters s and d? (Try the
same alignment with one or two other values of the parameters — how hard is it to find different
“optimal” alignments?) What does this tell you about the choice of parameters when doing this kind
of simple alignment?



