
7.03 Fall 2003 Problem Set 6 Key 

1a) 	 q, the frequency of allele a, is the number of a alleles divided by the total number 
of alleles. Since there are 1,000,000 individuals in the population, there are 
2,000,000 alleles in the population. Each aa homozygote has two a alleles, while 
each Aa heterozygote has one a allele. We can calculate q as follows: 
q=f(a)=((2(500)+9000)/2000000=0.005 

b) 	 p+q=1, so p=1-q=1-0.005=0.995 

c) 	 One generation of random mating is sufficient to bring a population into Hardy-
Weinberg equilibrium, regardless of whether the previous generation was in 
Hardy-Weinberg equilibrium. 

 Therefore f(aa)=q2=(0.005)2=2.5x10-5, 
and the total number of aa individuals is 2.5x10-5x(1000000)=25 

Likewise, the total number of Aa individuals is 

1000000(2pq)=1000000(2x0.995x0.005)=9950


d) 	 no. In the absence of selection and mutation, there will be no change in the 
frequency of each allele from generation to generation. 

In generation one, there are 9000+2(500)=10000 a alleles 

In generation two, there are 9950+2(25)=10000 a alleles 


e) 	 no. If generation one was in Hardy-Weinberg equilibrium, then the number of 
homozygous aa albino individuals would be equal to q2. However, 
q2*1000000=1000000(0.005)2=25, but there were 500 albino individuals in 
generation one. 

f)	 The probability that an unaffected individual is a carrier is p(Aa)/(p(Aa)+p(AA)).  
For f and g, we can assume that the probability of an unaffected individual being a 
carrier is just f(Aa), as the number of aa albino individuals is extremely small. 

The probability of an unaffected individual being a carrier is 
f(Aa)=2pq=2(0.005)(0.995)=9.95x10-3 

The chances that both parents are carriers and both pass on their a allele is 
(1/4)(9.995x10-3)2=2.48x10-5 

g) 	 The frequency of Aa carriers in generation one is 9000/1000000=9x10-3 

The chances that both parents are carriers and both pass on their a allele is 
(1/4)(9.995x10-3)(9x10-3)=2.24x10-5 

h) 	 The albino parent is aa, and must therefore pass on an a allele. 
The probability that the other parent passes on an a allele is 
(1/2)(9.995x10-3)=5.00x10-3 
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2a) 	 For a rare dominant disease you can assume that all affected individuals are 
heterozygous. Therefore the frequency of heterozygotes is f(Aa)=1/1000, and 
each of those individuals has one q allele, so q=1/2000. 
For a dominant disorder with selective disadvantage S and mutation rate µ, q=µ/S.  
Therefore 1/2000=µ/0.2, and µ=0.0001 

b) 	 For a recessive mutation, the incidence of disease is equal to q2. Therefore, 
q=(1/1000)1/2=0.032, plugging that into q2S=µ: (1/1000)x0.2=2 x 10-4 

Final answer: µ=2 x 10-4 

c) Plugging in the value for q calculated in part b into q*S=h, we find that 
h=0.032*0.2=6.4x10-3. Heterozygous advantage is phenomena where the 
heterozygotes of a detrimental allele are better equipped to survive, thus maintaining 
the detrimental allele in the population.  Individuals heterozygous at this particular 
locus are more fit by a factor of 1+h.  Final answer: h=6.4x10-3 
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3. a) Given µ and S we can calculate q using the equation q = Sµ / = = 0.005 . 
0.4 

The incidence of the disease in the population would be 
2	 −5q = (0.005)2 = 2.5×10 therefore, one in forty thousand people would be affected by the 

disease. 
b) At steady state, ∆ =  0 , and ∆q =  ∆  qmut . Let us call the number of affected q sel 

totalindividuals nh
total ; nh is the sum of homozygotes arising from inbreeding and from 

random mating.  The number of homozygotes arising from inbreeding are described by 
the equation: 

nh
inbreeding = Fq  

where F is the inbreeding coefficient (in this case 1/16) and q is the allele frequency. The 
number of homozygotes arising from random mating is described by the familiar 

random 2equation: nh = q . Adding the respective weights, as random mating corresponds to 
90% and cousin marriage corresponds to 10% of the mating, we get a final equation of: 

total nh = 0.9nh
random + 0.1 nh

inbreeding = 0.9q2 + 0.1 Fq  
We plug this modified in the nh

total , into the ∆qsel equation to get 

∆qsel =  −  S (0.9 q2 + 0.1 Fq  ) 

−Setting this equal to ∆qmut = µ = 10 5 and plugging in values for F and S, we 
get a final equation: 

q∆ =  ∆  q −  ∆  q = µ − S (0.9 q2 + 0.1 Fq  ) = 0mut	 sel 

210−5 − 0.4[0.9q2 + 0.1( 1
16)q] = 10-5  − 0.36q − 0.0025q = 0 

q = 0.002839  or q =  −  0.009784 
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As we cannot have negative allele frequencies, final answer is q=0.00284. How does this 
allele frequency compare to part a? To find the incidence of the disease, we plug in our q 

2 total value into the nh
total = 0.9q + 0.1 Fq  equation. This gives us: nh = 0.00002574 . Final 

answer: incidence=1 in forty thousand. This is the same number obtained due to random 
mating-why do you think this is the case? 
The allele frequency is reduced because inbreeding results in a greater proportion of 
homozygotes, because homozygotes are selected against, those alleles fall out of the 
population. Why is the incidence the same?  Eventhough the allele frequency is low, 
much more of the inbreeding population is homozygous at this locus relative to the 
randomly mating population, resulting the same incidence of disease at equilibrium 

c) The allele frequency can be calculated by 

q = q + ∆q ≈ q,  after one generation new old 
2 −5∆ =  −  Sq  + µ =  −  0.4q2 +10q 

Assuming that our inbred population was at steady-state, we can use a q = 0.00284 , 
giving us 

−5∆ =  −  0.4(0.00284)2 + 10 = 6.77 ×10−6q 
q = 0.00284 + 6.77 ×10 −6 = 0.00285 new 

2 −6q = (0.00285)2 = 8.104 ×10new 

Incidence of disease right after cessation of inbreeding is approximately one in 125,000.  
This is much lower than at Hardy-Weinberg equilibrium. 

d) The allele frequency would be expected to rise after cessation of inbreeding until 
q=0.005. This is due to the fact that the mutation rate is creating more alleles than are 
being selected out in the population. The allele frequency, q, approaches 0.005 as time 
approaches infinity. 
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