DNA delivery and DNA Vaccines

Last Time:	intracellular drug delivery: enhancing cross priming for vaccines
Today:	DNA vaccination
Reading:	D.W. Pack, A.S. Hoffman, S. Pun, and P.S. Stayton, 'Design and development of polymers for gene delivery,' <i>Nat. Rev. Drug</i> <i>Discov.</i> 4 581-593 (2005)

Supplementary Reading:

ANNOUNCEMENTS:

DIRECT ENTRY TO CYTOSOL: MEMBRANE-PENETRATING PEPTIDES

Penetratin:

Short peptide sequence from drosophila transcription factor protein Antennapedia

RQIKIWFQNRRMKWKK

Models of membrane-penetrating peptide function

Image removed due to copyright restrictions. Please see: Derossi, et al. *J Biol Chem* 271, no. 30 (1996): 18188.

ACTIVATION ON ENTRY TO THE CYTOSOL Selective bond dissociation using reversible disulfide linkages

Image removed due to copyright restrictions. Please see: Falnes. *Curr Opin Cell Biol* 12 (2000): 407. Pore-forming proteins/peptides as a tool for membrane-penetrating drug carriers

Figures 1A, 1B, and 1C removed due to copyright restrictions. Please see: Bhakdi. *Arch Microbiol* 165 (1996): 73. fusogenic peptides: using viral entry strategies for drug delivery

Image removed due to copyright restrictions. Please see: Hawiger. *Curr Opin Chem Biol* 3 (1999): 89.

DNA DELIVERY AND DNA VACCINES

GENE THERAPY FOR VACCINATION: GENES THAT ENCODE ANTIGEN

Motivation for DNA vaccines Why are synthetic vectors of interest?) SELF-REPLICATING ANTIGEN ! COMPARE TO ADENOVIRUS: MUCH MORE EFFICIENT IN Ag EXPRESSION -> =95% TRANSFECTION EFFICIENCY (MOST DNA SYMMETIC VECTORS CHICKNY NTHVECTOR 51%) PRE-EXISTING IMMUNITY IN HUMANS TO ADENOVIAUS -> (AS HIGH AS 80%) SAFETY; WILL DNA INTEGRATE INTO GENOME? DNA SUNTHETIC VECTORS USUALUM CHEAPER, EASIER TO PROTUCE, MORS 1202UST THAN LIVE VIRUS) POSSIBILITY TO ENCODE MULTIPLE FACTORS ("ADJUVANTS")

IN ADDITION TO ANTIGEN

idealized objectives of DNA delivery

2 classes of synthetic vectors we'll discuss:

Image removed due to copyright restrictions. Please see: Vijayanathan, et al. *Biochemistry* 41, no. 48 (2002): 10485. Image removed due to copyright restrictions. Please see: Segura, T., and L. D. Shea. "Materials for non-viral gene delivery." *Annual Review of Materials Research* 31 (2001): 25-46.

Polyplex formation between polycations and plasmid DNA

Image removed due to copyright restrictions. Please see: Pack, et al. *Nat Rev Drug Discov* (2005).

Packaging DNA for delivery and cytosolic release

Image removed due to copyright restrictions.

Please see: Oupicky, D., A. L. Parker, and L.W. Seymour. "Laterally stabilized Complexes of DNA with Linear Reducible Polycations: Strategy for Triggered Intracellular Activation of DNA Delivery Vectors." *J Am Chem Soc* 124 (2002): 8-9.

Polycation/DNA charge ratios in DNA packaging and release

Image removed due to copyright restrictions. Please see: Segura et al. *Biomaterials* 26 (2005): 1575-1584.

Segura et al. *Biomaterials* **26** 1575-1584 (2005)

NIH 3T3 fibroblasts

Lipid-DNA microstructures

Image removed due to copyright restrictions. Please see: http://avantipolarlipids.com/

Lipid-DNA microstructures

Figure removed due to copyright restrictions. Please see: Figure 1 in Koltover, et al. *Science* 281 (1998): 78-81.

Lipid-DNA microstructures

Image removed due to copyright restrictions.

Please see: Martin-Herranz, A. et al. "Surface Functionalized Cationic Lipid-DNA Complexes for Gene Delivery: PEGylated Lamellar Complexes Exhibit Distinct DNA-DNA Interaction Regimes. *Biophys J* 86 (2004): 1160-8.

LIPID AND PARTICLE-BASED DNA CARRIERS

Image removed due to copyright restrictions.

CAIRON : FOR VACCINES PLASMIDS PROTECTED FROM DNASE R6A

TRANSPORT FROM THE CYTOSOL TO THE NUCLEUS

Figure removed due to copyright restrictions. Please see: Figure 1 in Escriou et al. *Adv Drug Delib Rev* 55 (2003): 295. Figure removed due to copyright restrictions. Please see: Figure 3 in Kircheis et al. *Adv Drug Delib Rev* 53 (2001): 2341.

Limitations of current materials

Graph removed due to copyright restrictions. Please see: Moghimi , et al. *Mol Therapy* 11 (2005): 990-995.

Built-in adjuvants: DNA vaccines encoding antigen and other factors

Figure removed due to copyright restrictions. Please see: Figure 1 in Sumida, et al. J *Clinical Invest* 114 (2004): 1334-1342.

Built-in adjuvants: DNA vaccines encoding antigen and other factors

Graph removed due to copyright restrictions. Please see: Sumida et al. J. *Clinical Invest* 114 (2004): 1334-1342.

Lecture 22 Spring 2006

Further Reading

- 1. Varga, C. M., Hong, K. & Lauffenburger, D. A. Quantitative analysis of synthetic gene delivery vector design properties. *Mol Ther* **4**, 438-46 (2001).
- 2. Varga, C. M., Wickham, T. J. & Lauffenburger, D. A. Receptor-mediated targeting of gene delivery vectors: insights from molecular mechanisms for improved vehicle design. *Biotechnol Bioeng* **70**, 593-605 (2000).
- 3. Segura, T. & Shea, L. D. Materials for non-viral gene delivery. *Annual Review of Materials Research* **31**, 25-46 (2001).
- 4. Segura, T. & Shea, L. D. Surface-tethered DNA complexes for enhanced gene delivery. *Bioconjugate Chemistry* **13**, 621-629 (2002).
- 5. Vijayanathan, V., Thomas, T. & Thomas, T. J. DNA nanoparticles and development of DNA delivery vehicles for gene therapy. *Biochemistry* **41**, 14085-94 (2002).
- 6. Demeneix, B. et al. Gene transfer with lipospermines and polyethylenimines. *Adv Drug Deliv Rev* **30**, 85-95 (1998).
- 7. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. *Proc Natl Acad Sci U S A* **92**, 7297-301 (1995).
- 8. Zanta, M. A., Boussif, O., Adib, A. & Behr, J. P. In vitro gene delivery to hepatocytes with galactosylated polyethylenimine. *Bioconjug Chem* **8**, 839-44 (1997).
- 9. Rungsardthong, U. et al. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. *Biomacromolecules* **4**, 683-90 (2003).
- 10. Rungsardthong, U. et al. Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy. *J Control Release* **73**, 359-80 (2001).
- 11. Oupicky, D., Parker, A. L. & Seymour, L. W. Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. *J Am Chem Soc* **124**, 8-9 (2002).
- 12. Ewert, K. et al. Cationic lipid-DNA complexes for gene therapy: understanding the relationship between complex structure and gene delivery pathways at the molecular level. *Curr Med Chem* **11**, 133-49 (2004).
- 13. Martin-Herranz, A. et al. Surface functionalized cationic lipid-DNA complexes for gene delivery: PEGylated lamellar complexes exhibit distinct DNA-DNA interaction regimes. *Biophys J* **86**, 1160-8 (2004).
- 14. Bonifaz, L. C. et al. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination. *J Exp Med* **199**, 815-24 (2004).
- 15. Kircheis, R., Wightman, L. & Wagner, E. Design and gene delivery activity of modified polyethylenimines. *Advanced Drug Delivery Reviews* **53**, 341-358 (2001).