Tuning degradation through molecular structure/ Controlled Release Devices

Last time:	factors controlling polymer degradation and erosion theory of polymer erosion
Today:	degradable solid polymer molecular design fundamental concepts of controlled release devices and applications controlled release devices based on degradable polymers
Reading:	 W.M. Saltzman and W.L. Olbricht, 'Building drug delivery into tissue engineering, Nat. Rev. Drug Disc. 1, 177-186 (2002) W.M. Saltzman 'Drug administration and effectiveness,' from Drug Delivery: Engineering Principles for Drug Therapy, (2001)

Announcements:

Last time

Bulk vs. surface erosion: how do we predict it?

Bulk erosion

Surface erosion

Figures removed for copyright reasons. Please see:

Fig. 8(b) in Lu, L., C. A. Garcia, and A. G. Mikos. "In Vitro Degradation of Thin Poly(DL-lactic-coglycolic acid) Films." *J Bio Med Mater Res* 46 (1999): 236-44.

Images of Surface Erosion removed due to copyright restrictions.

Fig. 6(d) in Agrawal, C. M., and K. A. Athanasiou. "Technique to Control pH in Vicinity of Biodegrading PLA-PGA Implants." *J Biomed Mater Res* 38 (1997): 105-14.

Göpferich theory of polymer erosion

• If polymer is initially water-insoluble, and hydrolysis is the only mechanism of degradation, then two *rates* dominate erosion behavior:

Rate of water diffusion into polymer matrix

Figure by MIT OCW.

After Atkins, P. The Elements of Physical Chemistry. New York, NY: W. H. Freeman, 1997.

Lecture 3 Spring 2006

 $p(t) = ke^{-kt}$

Mean lifetime of one bond:

...this is the mean time I need to wait to observe one bond I am watching be broken.

Mean lifetime of *n* bonds:

Mean lifetime of *n* bonds:

How many bonds in a depth x?

Comparison of water diffusion rate to bond lysis rate allows the qualitative mechanism to be predicted:

$$\varepsilon = \text{erosion number} \equiv \frac{-t_{\text{DIFF}}}{-t_{c}(n)}$$

$$\epsilon >> 1$$

 $\epsilon \sim 1$ change in
erosion mechanism
 $\epsilon << 1$

Erosion parameters of degradable polymers

	Chemical Structure	Polymer	$\lambda(s^{-1})$	ε ^a	L _{critical} ^b		
	$\begin{bmatrix} 0 & 0 \\ H & H \\ R - C - O - C \end{bmatrix}$	Poly(anhydrides)	1.9 x 10 ⁻³ Ref. [30]	11,515	75 μm		
	$\begin{bmatrix} R \\ I \\ O - C - O - R \\ R \end{bmatrix}$	Poly(ketal)	6.4 x 10 ⁻⁵ Ref. [30]	387	0.4 mm		
	$\begin{bmatrix} OR \\ I \\ O-C-O-R \\ I \\ R \end{bmatrix}$	Poly(ortho esters)	4.8 x 10 ⁻⁵ Ref. [30]	291	0.6 mm		
	$\begin{bmatrix} H\\I\\O-C-O-R\\I\\R \end{bmatrix}$	Poly(acetal)	2.7 x 10 ⁻⁸ Ref. [30]	0.16	2.4 cm		
	$\begin{bmatrix} O \\ II \\ O - (CH_2)_5 - C \end{bmatrix}$	Poly(e-caprolactone)	9.7 x 10 ⁻⁸ Ref. [31]	0.1	1.3 cm		
	$\begin{bmatrix} H & O \\ I & II \\ O-C-C \\ I \\ CH_3 \end{bmatrix}$	Poly(α-hydroxy-esters)	6.6 x 10 ⁻⁹ Ref. [30]	4.0 x 10 ⁻²	7.4 cm		
	$\begin{bmatrix} H & H & O \\ I & I & II \\ N-C-C \\ I \\ R \end{bmatrix}$	Poly(amides)	2.6 x 10 ⁻¹³ Ref. [30]	1.5 x 10 ⁻⁶	13.4 m		
^a For a 1cm thick device, D = 10^{-8} cm ² s ⁻¹ (estimated from Ref. [32]) and in $\left[\sqrt[3]{M_n/N_A(N-1)\rho}\right] = -16.5$.							
^b D = 10 ⁻⁸ cm ² s ⁻¹ (estimated from Ref. [32]) and in $\left[\sqrt[3]{M_n/N_A(N-1)\rho}\right] = -16.5$.							
	Estimated values of ε and $L_{critical}$ for selected degradable polymers						

Figure by MIT OCW.

Dependence of erosion number on device dimensions

Testing the theory: experimental switch of a bulk-eroding polymer to a surface-eroding mechanism

PLA and PLGA degradation at pH 7.4: (bulk erosion)

Figure by MIT OCW.

Figure by MIT OCW.

(SEM shown earlier confirms surface erosion mechanism)

Control over polymer degradation by molecular architecture

Controlling molecular architecture: selfassembly

Concepts in controlled release Application of degradable solid polymers to controlled release

Therapeutic index: tailoring materials to provide release kinetics matching the 'therapeutic window'

Bolus drug injection:

Amount of drug in tissue or circulation

time

Therapeutic index: tailoring materials to provide release kinetics matching the 'therapeutic window'

Example applications of controlled release

Application	Examples	Active concentration of cargo
Provide missing soluble factors promoting cell differentiation, growth, survival, or other functions	Replace deficient human growth hormone in children	1-10 pM; Hormones 5-10 nM
Sustained or modulated delivery of a therapeutic drug	Release of anti-cancer drugs at site of tumors to induce cancer cell apoptosis, ocular drugs for treatment of glaucoma, contraceptive drugs, antimalarial drugs	varies
Create gradients of a molecule <i>in situ</i>	Chemoattraction of immune cells to antigen depot for vaccinesk ¹	1-50 pM
One time procedure (e.g. injection) with multiple dose delivery	Pulsatile release of antigen for vaccines	10-100 μg antigen
Gene therapy	Correction of cystic fibrosis gene defect, correction of adenosine deaminase deficiency (ADA-SCID) in lymphocytes, replace defective gene in Duchenne muscular dystrophy, cancer immunotherapy ²	1-20 μg DNA

Delivery site			
Oral (delivery via digestive tract)			
Sublinguinal (under tongue)			
Rectal			
Parenteral			
 intramuscular 			
 peritoneal (gut) 			
 subcutaneous (under skin) 			
Ocular			

Drug diffusion-controlled release

Drug diffusion-controlled release

Advantage:

Disadvantages:

Further Reading

- 1. Kumamoto, T. et al. Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine. *Nat Biotechnol* **20**, 64-9 (2002).
- 2. Dash, P. R. & Seymour, L. W. in *Biomedical Polymers and Polymer Therapeutics* (eds. Chiellini, E., Sunamoto, J., Migliaresi, C., Ottenbrite, R. M. & Cohn, D.) 341-370 (Kluwer, New York, 2001).
- 3. Baldwin, S. P. & Saltzman, W. M. Materials for protein delivery in tissue engineering. *Adv Drug Deliv Rev* **33**, 71-86 (1998).
- 4. Okada, H. et al. Drug delivery using biodegradable microspheres. J. Contr. Rel. **121**, 121-129 (1994).
- 5. Santini Jr, J. T., Richards, A. C., Scheidt, R., Cima, M. J. & Langer, R. Microchips as Controlled Drug-Delivery Devices. *Angew Chem Int Ed Engl* **39**, 2396-2407 (2000).
- 6. Garcia, J. T., Dorta, M. J., Munguia, O., Llabres, M. & Farina, J. B. Biodegradable laminar implants for sustained release of recombinant human growth hormone. *Biomaterials* 23, 4759-4764 (2002).
- 7. Jiang, G., Woo, B. H., Kang, F., Singh, J. & DeLuca, P. P. Assessment of protein release kinetics, stability and protein polymer interaction of lysozyme encapsulated poly(D,L-lactide-co-glycolide) microspheres. *J Control Release* **79**, 137-45 (2002).
- 8. Edlund, U. & Albertsson, A.-C. Degradable polymer microspheres for controlled drug delivery. *Advances in Polymer Science* **157**, 67-112 (2002).
- 9. Siepmann, J. & Gopferich, A. Mathematical modeling of bioerodible, polymeric drug delivery systems. *Adv Drug Deliv Rev* **48**, 229-47 (2001).
- Charlier, A., Leclerc, B. & Couarraze, G. Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations. *Int J Pharm* 200, 115-20 (2000).
- 11. Fan, L. T. & Singh, S. K. *Controlled Release: A Quantitative Treatment* (eds. Cantow, H.-J. et al.) (Springer-Verlag, New York, 1989).