
Materials with Biological Recognition (continued)

Last time:	Biological recognition <i>in vivo</i> Engineering biological recognition of biomaterials: adhesion/migration peptides
oday:	Engineering biological recognition of biomaterials: enzymatic recognition and cytokine signaling
Reading:	J.C. Schense et al., 'Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension,' <i>Nat. Biotech.</i> 18 , 415-419 (2000)
Supplementary Reading:	-

ANNOUNCEMENTS:

Cell adhesion on biomaterials:

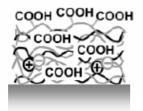
Cell responses to non-biological, synthetic biomaterials

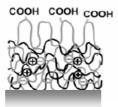
- 1. Protein adsorption
- 2. Denaturation (unfolding)?
- 3. Cell responses to expected and unexpected epitopes
- 4. Reorganization?
 - Vroman effect: protein exchange

Control of cell attachment by mechanical properties of substrate

Polyelectrolyte multilayers (Rubner lab MIT):

Images removed due to copyright reasons. Please see:


Mendelsohn, Jonas D., Sung Yun Yang, Jeri'Ann Hiller, Allon I. Hochbaum, and Michael F. Rubner. "Rational Design of Cytophilic and Cytophobic Polyelectrolyte Multilayer Thin Films." *Biomacromolecules* 4 (2003): 96-106.


Control of cell attachment by mechanical properties of substrate

(Van Vliet and Rubner labs):

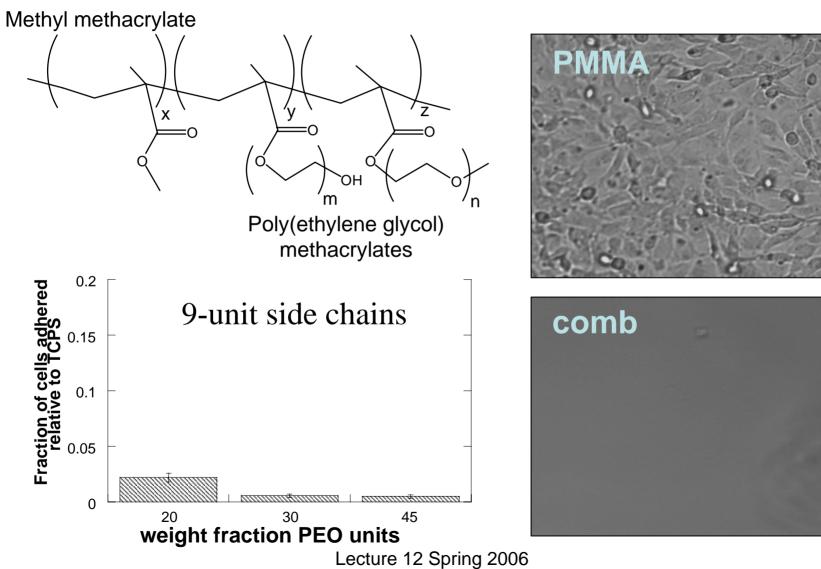
Graph removed due to copyright reasons. Please see: Figure 3 in Thompson, M. T., et al. *Biomaterials* 26 (2005): 6836–6845. Graph removed due to copyright reasons. Please see: Figure 4 in Thompson, M. T., et al. *Biomaterials* 26 (2005): 6836–6845.

Lecture 12 Spring 2006

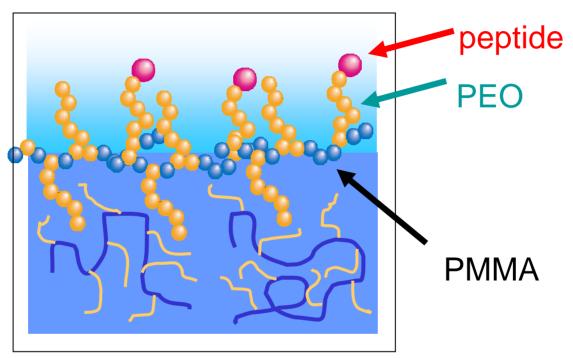
Controlling cell response to biomaterials by building in ECM cues on a 'blank slate' background

Design of protein adsorption-resistant surfaces

Design of protein adsorption-resistant surfaces


Surface modification strategies:

Self-assembled monolayers (SAMs):


Surface grafting:

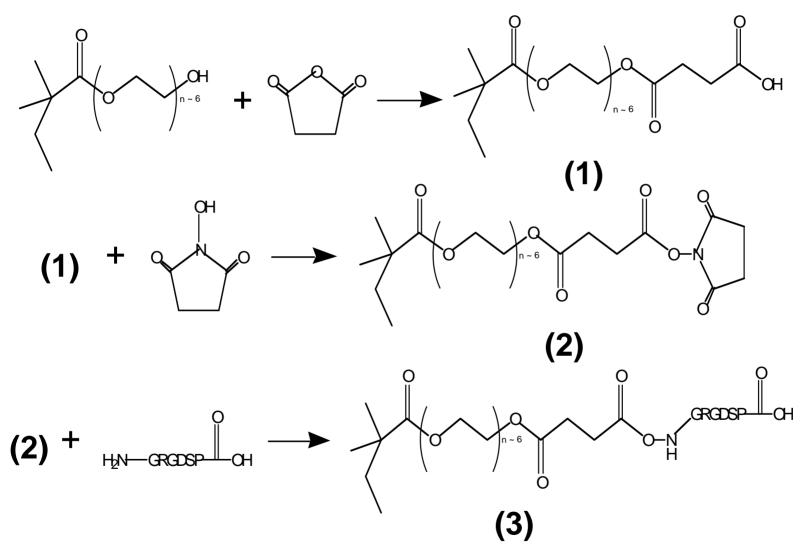
Graft copolymers or surface polymerization:

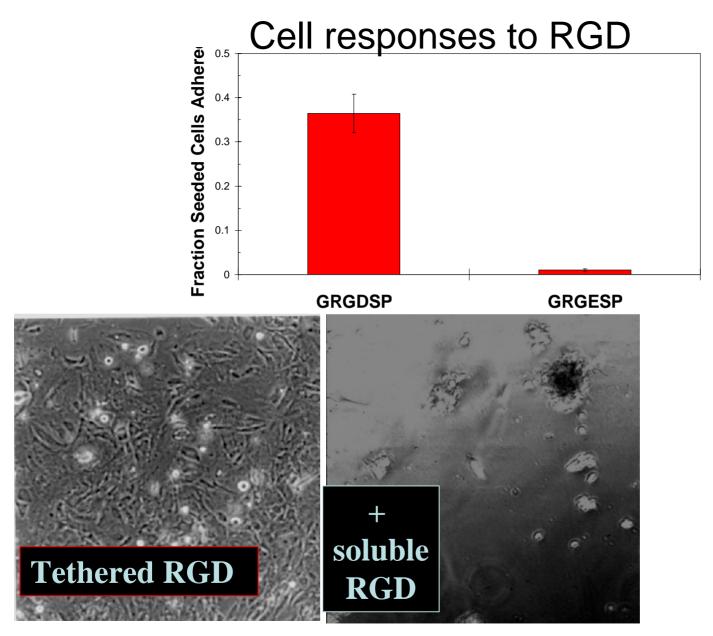
Limiting nonspecific cell adhesion

Tailoring cell adhesion on biomaterials via immobilized ligands

Peptide integrin-binding GRGDSP sequence

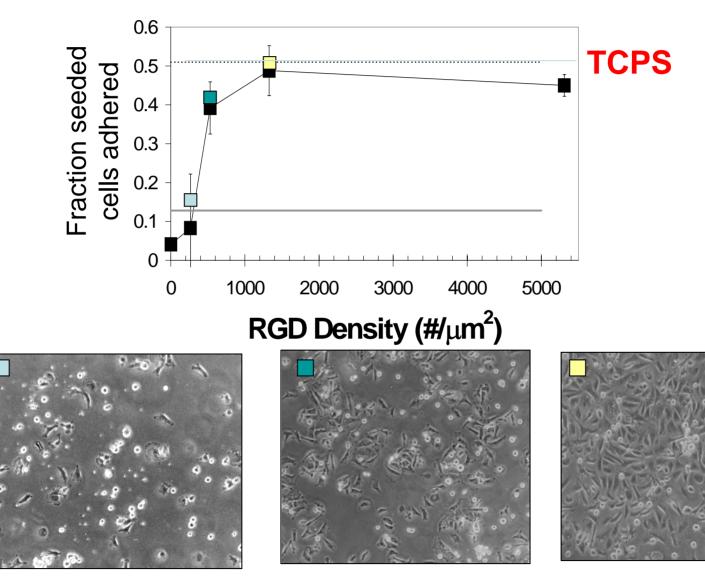
PEO short 6-9 unit side chains for protein resistance


PMMA backbone anchors hydrophilic side chains


Lecture 12 Spring 2006

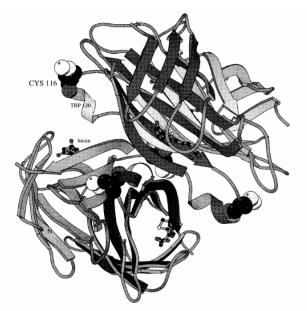
Peptides used to modulate cell adhesion on biomaterials

Peptide sequence	Derived from	Conjugate receptor	Role
IKVAV	Laminin α-chain	LBP110 (110 KDa laminin binding protein)	Cell-ECM adhesion
RGD	Laminin α-chain, fibronectin, collagen	Multiple integrins	Cell-ECM adhesion
YIGSR	Laminin β1-chain	$\alpha_1\beta_1$ and $\alpha_3\beta_1$ integrins	Cell-ECM adhesion
RNIAEIIKDI	Laminin γ-chain	unknown	Cell-ECM adhesion
HAV	N-cadherin	N-cadherin	Cell-cell adhesion
DGEA	Type I collagen	$\alpha_2\beta_1$ integrin	Cell-ECM adhesion
VAPG	Elastase	Elastase receptor	Cell-ECM adhesion
KQAGDV	Fibrinogen γ-chain	β_3 integrins	Cell-ECM adhesion


Peptide linking chemistry

Lecture 12 Spring 2006

Cells respond to control of ligand density at the surface


Cells respond to control of ligand density at the surface

Cell migration on fibronectincoated substrates:

Graph removed due to copyright reasons. Please see: Figure 1b in Palecek, S. et al. "Integrin-ligand Binding Properties Govern Cell Migration Speed Through Cellsubstratum Adhesiveness." *Nature* 385 (6 February, 1997): 537 - 540.

> Graphs removed due to copyright reasons. Please see: Figure 2b in Palecek, S., et al. "Integrin-ligand Binding Properties Govern Cell Migration Speed Through Cellsubstratum Adhesiveness." *Nature* 385 (6 February, 1997): 537 - 540.

Alternative functionalization approaches: avidin-biotin chemistry

STREPTAVIDIN - E116C

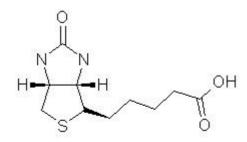
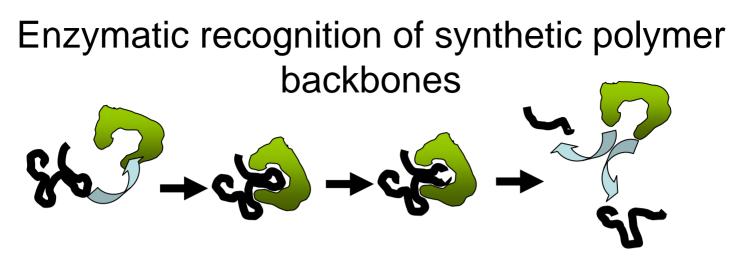


Image removed due to copyright reasons. Please see: Patel, et al. *FASEB Journal* 12 (1998): 1447-454.

Controlling gross physical distribution of cells

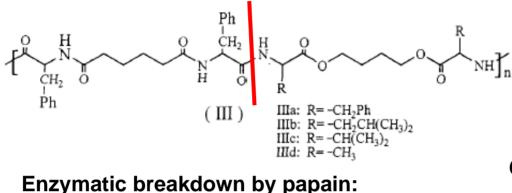
Images removed due to copyright reasons. Please see: Patel, et al. *FASEB Journal* 12 (1998): 1447-454.


Cellular responses to physically patterned ligand- with nonadhesive background

Images removed due to copyright reasons. Please see: Patel, et al. *FASEB Journal* 12 (1998): 1447-454.

Biomaterials recognized by cell-secreted enzymes: synthetic ECMs

Enzymatic remodeling of synthetic ECMs



Cleavage of synthetic polymers by enzymes

Cell source	Enzyme	Native function	Acts on	Degradation Mechanism	Result
Various bacteria	lipases	protease	Polyesters, polyesteramides		Monomers or dimers
<i>Tritirachium album</i> (mold)	Proteinase K	Protease	Poly(lactide)		Monomers or dimers
Mammalian cells	esterases	protease	Poly(alkyl cyanoacrylates)	II	Water-soluble polymers
Mammalian cells	Papain, pepsin	proteases	polyesteramides ²		Untested
Mammalian cells	α -chymotrypsin	Serine protease	Aromatic peptides in polyesteramides ³ (e.g. Ala, Val, Leu)		Untested
Mammalian cells	elastase	protease	Polyesteramides		untested

Enzymatic degradation of polyesteramides

N. Paredes et al. *J. Polym. Sci. A* **36**, 1271 (1998)

Compare with hydrolysis: (poly(ortho ester))

Graph removed due to copyright reasons. Please see: Figure 10 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998).

Graph removed due to copyright reasons. Please see: Figure 12 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998).

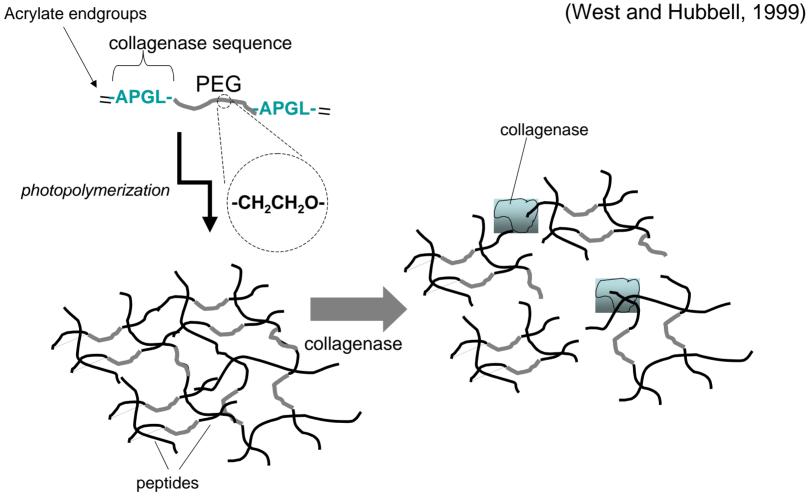
Lecture 12 Spring 2006

Esterase attack on poly(alkyl cyanoacrylates)

Degradation of 250 nm-diam. porous particles:

Graph removed due to copyright reasons. Please see: Figure 11 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998). Graph removed due to copyright reasons. Please see: Figure 2 in Paredes, N., et al. *J. Polym. Sci. A* 36, no. 1271 (1998).

Lecture 12 Spring 2006


Engineering enzymatic recognition of hydrogel biomaterials: recognition of peptide motifs

Enzymatic activity in vivo on peptide sequences:^{5,6}

Cleavage Enzyme	Functions <i>in vivo</i>	Target amino acid sequences
Plasminogen activator (urokinase or tissue-type plasminogen activator) / plasminogen → plasmin	Degradation of fibrin matrices, angiogenesis, tumor progression; urokinase can bind to cell surface receptor	
Matrix metalloproteinases (soluble and cell-surface): e.g. Fibroblast Collagenase (MMP I)	Facilitate cell migration	Type I collagen: Gly ₇₇₅ -Ile ₇₇₆ In smaller peptides: Gly-Leu or Gly Ile bonds
Elastase	Elastin remodeling	Poly(Ala) sequences

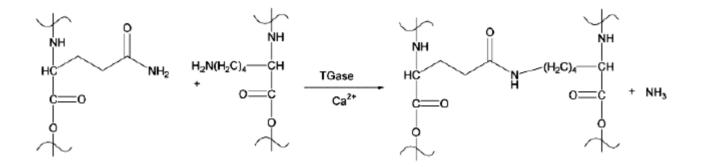
Enzyme-sensitive crosslinks in hydrogel biomaterials

Effect of enzyme concentration

Gel containing collagenase sequence

Gel containing elastase sequence

Graph removed due to copyright reasons. Please see: Figure 1 in West, J.L. and J. A. Hubbell. "Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration." *Macromolecules* 32 (1999): 241-244. Graph removed due to copyright reasons. Please see: Figure 2 in West, J.L. and J. A. Hubbell. "Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration." *Macromolecules* 32 (1999): 241-244.


Cellular migration through enzymaticallyrecognized hydrogels

Biphasic migration response in 3D matrix:

Image removed due to copyright reasons. Please see: Figure 4 in Gobin, A.S. and J. L. West. "Cell Migration Through Defined, Synthetic ECM Analogs." *Faseb J* 16 (2002): 751-3.

Image removed due to copyright reasons. Please see: Figure 6 in Gobin, A.S. and J. L. West. "Cell Migration Through Defined, Synthetic ECM Analogs." *Faseb J* 16 (2002): 751-3.

Enzymatic recognition of biomaterials II: Enzymatic cross-linking/modification of biomaterials

Example enzymes and their substrates:

Enzyme	Substrate <i>in vivo</i>	Synthetic substrates	Result
Transglutaminase	Glutamines	Glu-containing peptides	Amide bond formation
Factor XIII	Fibrin γ-chain	Peptides derived from γ- chain FXIII binding site	Amide bond formation

Biomaterials that mimic signals from soluble factors or other cells

Cytokine receptor-based recognition of biomaterials

Figure by MIT OCW.

Diverse functions of cytokines:

- •Induce cell migration/stop cell migration
- Induce cell growth
- Induce differentiation
 - •Upregulate tissue-specific functions

Characteristics:

- •Typically potent, act at pmol concentrations
- •Synergize with other receptor signals •e.g. integrins

Changes in signaling achieved by cytokine immobilization on surfaces

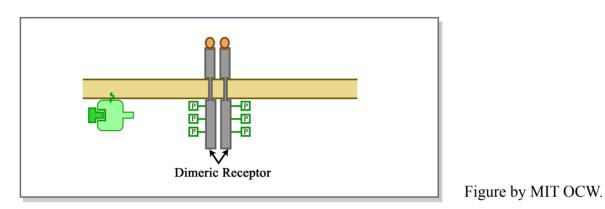
Image removed due to copyright reasons. Please see:

Figure 1 in Ito, Y., et al. "Tissue Engineering by Immobilized Growth Factors." *Materials Science and Engineering C6* (1998): 267-274.

Image removed due to copyright reasons.

Please see:

Figure 1 in Ito, Y., et al. "Tissue Engineering by Immobilized Growth Factors." *Materials Science and Engineering C6* (1998): 267-274.


Local control of gene expression by non-diffusable Patterned immobilization of EGF: Cytokines:

Images removed for copyright reasons.

Please see:

Figure 4 in Ito, Y. "Regulation of Cell Functions by Micropattern Immobilized Biosignal Molecules." Nanotechnology 9 (1998): 200-204.

Surface immobilization can induce new function in cytokines: case of tethered EGF-triggered neuronal cell differentiation

PC12 cell line:

 induced to differentiate and extend axons under stimulation of NGF (nerve growth factor)
induced to proliferate by EGF

Signal doesn't trigger internalization of receptor; thus signal lasts longer and triggers differentiation

Signal triggers internalization of receptor; short signal triggers proliferation

NGF vs. EGF signaling in PC12 neuronal cells

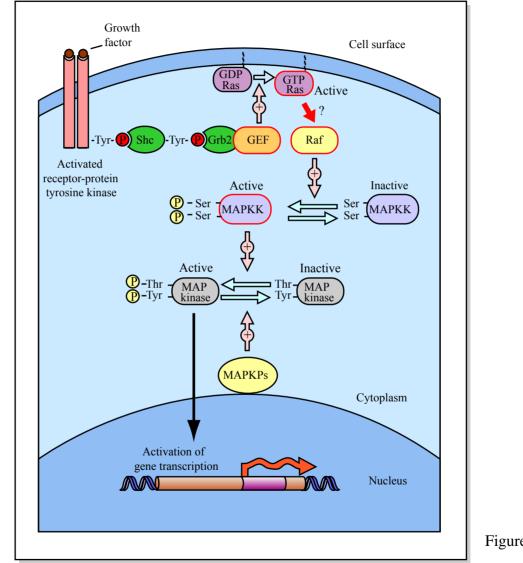


Figure by MIT OCW.

Further Reading

- 1. Voet & Voet. in *Biochemistry*.
- 2. Paredes, N., Rodriguez, G. A. & Puiggali, J. Synthesis and characterization of a family of biodegradable poly(ester amide)s derived from glycine. *Journal of Polymer Science, Part A: Polymer Chemistry* **36**, 1271-1282 (1998).
- 3. Fan, Y., Kobayashi, M. & Kise, H. Synthesis and biodegradability of new polyesteramides containing peptide linkages. *Polymer Journal* **32**, 817-822 (2000).
- 4. O, S. C. & Birkinshaw, C. Hydrolysis of poly (n-butylcyanoacrylate) nanoparticles using esterase. *Polymer Degradation and Stability* **78**, 7-15 (2002).
- 5. Ekblom, P. & Timpl, R. Cell-to-cell contact and extracellular matrix. A multifaceted approach emerging. *Curr Opin Cell Biol* **8**, 599-601 (1996).
- 6. Chapman, H. A. Plasminogen activators, integrins, and the coordinated regulation of cell adhesion and migration. *Curr Opin Cell Biol* **9**, 714-24 (1997).
- 7. Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H. & West, J. L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. *Biomaterials* **22**, 3045-51 (2001).
- 8. West, J. L. & Hubbell, J. A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. *Macromolecules* **32**, 241-244 (1999).
- 9. Gobin, A. S. & West, J. L. Cell migration through defined, synthetic ECM analogs. Faseb J 16, 751-3 (2002).
- 10. Sperinde, J. J. & Griffith, L. G. Control and prediction of gelation kinetics in enzymatically cross-linked poly(ethylene glycol) hydrogels. *Macromolecules* **33**, 5476-5480 (2000).
- 11. Sperinde, J. J. & Griffith, L. G. Synthesis and characterization of enzymatically-cross-linked poly(ethylene glycol) hydrogels. *Macromolecules* **30**, 5255-5264 (1997).
- 12. Zhang, Z. Y., Shum, P., Yates, M., Messersmith, P. B. & Thompson, D. H. Formation of fibrinogen-based hydrogels using phototriggerable diplasmalogen liposomes. *Bioconjug Chem* **13**, 640-6 (2002).
- 13. Sanborn, T. J., Messersmith, P. B. & Barron, A. E. In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. *Biomaterials* **23**, 2703-10 (2002).
- 14. Collier, J. H. et al. Thermally and photochemically triggered self-assembly of peptide hydrogels. *J Am Chem Soc* **123**, 9463-4 (2001).
- 15. Collier, J. H. & Messersmith, P. B. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. *Bioconjug Chem* **14**, 748-55 (2003).
- 16. Schense, J. C., Bloch, J., Aebischer, P. & Hubbell, J. A. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. *Nat Biotechnol* **18**, 415-9 (2000).
- 17. Ito, Y. Tissue engineering by immobilized growth factors. *Materials Science and Engineering C* 6, 267-274 (1998).
- 18. Ito, Y. Regulation of cell functions by micropattern-immobilized biosignal molecules. *Nanotechnology* **9**, 200-204 (1998).
- 19. Kuhl, P. R. & Griffith-Cima, L. G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. *Nat Med* **2**, 1022-7 (1996).
- 20. Chen, G. & Ito, Y. Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation. *Biomaterials* **22**, 2453-7 (2001).
- 21. Ito, Y. Surface micropatterning to regulate cell functions. *Biomaterials* 20, 2333-42 (1999).