Interactions of cells with their environment; Engineering materials with biological recognition

Last time:	Polyelectrolyte hydrogel swelling thermodynamics Applications of polyelectrolyte hydrogels: BioMEMS and drug delivery
Today:	Biological recognition <i>in vivo</i> Engineering biological recognition of biomaterials: controlling cell adhesion, migration, and cytokine signaling
Reading:	Y. Hirano and D.J. Mooney, 'Peptide and protein presenting materials for tissue engineering,' Adv. Mater. 16 (1) 17-25 (2004)
	Discher, Janmey, Wang, 'Tissue Cells Feel and Respond to the Stiffness of Their Substrate,' <i>Science</i> 310 1139-1143 (2005))
Supplementary Reading:	'The Extracellular Matrix,' pp. 1124-1150, Molecular Biology of the Cell, Lodish et al.

ANNOUNCEMENTS:

In situ formability: example: 'printable' gels

Collagen printed on an agarose gel substrate:

Figure 14 in Burg, K. J., and T. Boland. "Minimally Invasive Tissue Engineering Composites and Cell Printing." *IEEE Eng. Med. Biol.* 22, no. 5 (2003): 84-91.

Tissue engineering

Formability of hydrogels for tissue engineering

Colloidal crystal template

Lecture 11 Spring 2006

Tissue engineering

Brightfield image:

Confocal fluorescence:

Scaffolds with ordered, highly interconnected porosity

PEG hydrogel scaffolds

A. Stachowiak et al, Advanced Materials (2005)

Degradable hydrogels: degradation by hydrolysis of cross-links (mechanism I)

Tissue engineering

Dextran-based degradable hydrogels: degradation by hydrolysis of cross-links

Figure by MIT OCW.

Tissue barriers/conformal coatings

Applications: tissue barriers

Engineering Biological Recognition in Synthetic Materials

Interactions of cells with their environment

Signals from extracellular environment:

Incorporation of ECM signals in biomaterials

Lecture 11 Spring 2006

The insoluble surroundings of the cell: Functions of the native extracellular matrix (ECM):

Collagen and Adhesions Proteins: Structure and Function

- Sixt et al. Immunity 22 (2005):19-25.
- Friedl et al. Eur. J. Immunol. 28 (1998): 2331.
- Lodish et al. Molecular Cell Biology

Adhesive interactions can play multiple roles simultaneously: supporting adhesion, delivery of biochemical signals, or delivering biomechanical

signals

Cells sense and respond to the stiffness of their substrate

(Discher, Janmey, Wang Science 310 1139-1143 (2005))

Cell adhesion on biomaterials:

Cell responses to non-biological, synthetic biomaterials

- 1. Protein adsorption
- 2. Denaturation (unfolding)?
- 3. Cell responses to expected and unexpected epitopes
- 4. Reorganization?
 - Vroman effect: protein exchange

Control of cell attachment by mechanical properties of substrate

Polyelectrolyte multilayers (Rubner lab MIT):

Figure by MIT OCW.

Controlling cell response to biomaterials by building in ECM cues on a 'blank slate' background

Design of protein adsorption-resistant surfaces

Design of protein adsorption-resistant surfaces

Limiting nonspecific cell adhesion

Tailoring cell adhesion on biomaterials via immobilized ligands

Peptide integrin-binding GRGDSP sequence

PEO short 6-9 unit side chains for protein resistance

PMMA backbone anchors hydrophilic side chains

Lecture 11 Spring 2006

Peptides used to modulate cell adhesion on biomaterials

Peptide sequence	Derived from	Conjugate receptor	Role
IKVAV	Laminin α-chain	LBP110 (110 KDa laminin binding protein)	Cell-ECM adhesion
RGD	Laminin α-chain, fibronectin, collagen	Multiple integrins	Cell-ECM adhesion
YIGSR	Laminin β1-chain	$\alpha_1\beta_1$ and $\alpha_3\beta_1$ integrins	Cell-ECM adhesion
RNIAEIIKDI	Laminin γ-chain	unknown	Cell-ECM adhesion
HAV	N-cadherin	N-cadherin	Cell-cell adhesion
DGEA	Type I collagen	$\alpha_2\beta_1$ integrin	Cell-ECM adhesion
VAPG	Elastase	Elastase receptor	Cell-ECM adhesion
KQAGDV	Fibrinogen γ-chain	β_3 integrins	Cell-ECM adhesion

Lecture 11 Spring 2006

Cells respond to control of ligand density at the surface

Figure 11 in Irvine, D. J., A. V. Ruzette, A. M. Mayes, and L. G. Griffith. "Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 2. Surface segregation of comb polymers in polylactide." *Biomacromolecules* 2 (2001): 545-56.

Figure 12 in Irvine, D. J., A. V. Ruzette, A. M. Mayes, and L. G. Griffith. "Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 2. Surface segregation of comb polymers in polylactide." *Biomacromolecules* 2 (2001): 545-56.

Cells respond to control of ligand density at the surface

Figure by MIT OCW.

Further Reading

- 1. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L. & San Antonio, J. D. Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. *J Biol Chem* **277**, 4223-31 (2002).
- 2. Lemire, J. M., Merrilees, M. J., Braun, K. R. & Wight, T. N. Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro. *J Cell Physiol* **190**, 38-45 (2002).
- 3. Hubbell, J. A., Massia, S. P. & Drumheller, P. D. Surface-grafted cell-binding peptides in tissue engineering of the vascular graft. *Ann N Y Acad Sci* **665**, 253-8 (1992).
- 4. Drumheller, P. D. & Hubbell, J. A. Polymer networks with grafted cell adhesion peptides for highly biospecific cell adhesive substrates. *Anal Biochem* **222**, 380-8 (1994).
- 5. Kuhl, P. R. & Griffith-Cima, L. G. Tethered epidermal growth factor as a paradigm for growth factor-induced stimulation from the solid phase. *Nat Med* **2**, 1022-7 (1996).
- 6. Cook, A. D. et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. *J Biomed Mater Res* **35**, 513-23 (1997).
- 7. Mann, B. K., Schmedlen, R. H. & West, J. L. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. *Biomaterials* **22**, 439-44 (2001).
- de Gennes, P. G. Conformations of polymers attached to an interface. *Macromolecules* 13, 1069-1075 (1980).
- 9. Milner, S. T. Polymer brushes. Science 251, 905-914 (1991).
- 10. Mendelsohn, J. D., Yang, S. Y., Hiller, J., Hochbaum, A. I. & Rubner, M. F. Rational design of cytophilic and cytophobic polyelectrolyte multilayer thin films. *Biomacromolecules* **4**, 96-106 (2003).
- 11. Banerjee, P., Irvine, D. J., Mayes, A. M. & Griffith, L. G. Polymer latexes for cell-resistant and cell-interactive surfaces. *J Biomed Mater Res* **50**, 331-9. (2000).
- 12. Irvine, D. J., Mayes, A. M. & Griffith, L. G. Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 1. Synthesis and Characterization of Comb Thin Films. *Biomacromol.* **2**, 85-94 (2001).
- 13. Irvine, D. J. et al. Comparison of tethered star and linear poly(ethylene oxide) for control of biomaterials surface properties. *J Biomed Mater Res* **40**, 498-509. (1998).
- 14. Irvine, D. J., Ruzette, A. V., Mayes, A. M. & Griffith, L. G. Nanoscale clustering of RGD peptides at surfaces using comb polymers. 2. Surface segregation of comb polymers in polylactide. *Biomacromolecules* **2**, 545-56 (2001).
- 15. Patel, N. et al. Spatially controlled cell engineering on biodegradable polymer surfaces. *Faseb Journal* **12**, 1447-1454 (1998).
- 16. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A. & Horwitz, A. F. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. *Nature* **385**, 537-40 (1997).