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Abstract 
The bio-ontology community falls into two camps: first we have biology domain experts, who 
actually hold the knowledge we wish to capture in ontologies; second, we have ontology specialists, 
who hold knowledge about techniques and best practice on ontology development. In the bio
ontology domain, these two camps have often come into conflict, especially where pragmatism 
comes into conflict with perceived best practice. One of these areas is the insistence of computer 
scientists on a well-defined semantic basis for the Knowledge Representation language being used. 
In this article, we will first describe why this community is so insistent. Second, we will illustrate 
this by examining the semantics of the Web   Ontology Language and the semantics placed on the 
Directed Acyclic Graph  as used by the Gene Ontology. Finally we will reconcile the two 
representations, including the broader Open Biomedical Ontologies format. The ability to 
exchange between the two representations means that we can capitalise on the features of both 
languages. Such utility can only arise by the understanding of the semantics of the languages being 
used. By this illustration of the usefulness of a clear, well-defined language semantics, we wish to 
promote a wider understanding of the computer science perspective amongst potential users 
within the biological community. 

1 Background 
In this paper, we explain the role of a Knowledge Repre
sentation (KR) language's semantics. To illustrate the util
ity of language semantics we will use it to explore the 
reconciliation of the representations used for the Gene 
Ontology (GO) [1] and that used for the ontologies repre
sented in the W3C recommendation Web Ontology Lan
guage (OWL [2]). A language's semantics is often a great 
concern to computer scientists, a concern that is some

times lost on biologists. The goal of this paper is, there
fore, to explain the role of language semantics to a 
community outside computer science (this albeit anecdo
tal evidence is built up over many years of teaching and 
tutorials in this domain between the two disciplines). In 
the text of this document Boldface font is used to refer to 
objects and logical keywords within an ontology and Ital
ics Boldface font for terms that have a definition available 
in the glossary (see Additional file 1). 
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Different knowledge representation languages provide dif
ferent means to make statements about the knowledge to 
be captured in different ways. The semantics of these lan
guages tell both humans and computers how to interpret 
statements made in those languages. Different languages 
have varying expressivity and computational properties, 
hence the corresponding tools can offer different querying 
and reasoning mechanisms; consequently there is often a 
need to exchange between languages to take advantage of 
their characteristics. For example, the Web Ontology Lan
guage OWL-DL [3] comes with rather high expressivity 
and some powerful reasoning services. As a consequence, 
we can annotate data using terms (and expressions built 
from these terms) whose meaning is defined in some 
OWL-DL knowledge base, usually called an "ontology", 
and then use a software application called a reasoner to 
query that data. The reasoner will take into account the 
definitions of the terms when answering queries, thereby 
providing flexible access to that data. When translating a 
knowledge base from one language to another, we have to 
make sure that the knowledge captured in statements in 
one language is changed as little as possible when trans
forming them into statements in another language. 
Hence, the semantics of one language needs to be recon
ciled with the semantics of the other. 

The GO has become the de facto standard for describing 
the principal attributes (the molecular function, biologi
cal process, and cellular component) of knowledge about 
gene products across many databases [1,4]. It succeeds in 
the major aim of an ontology in providing a common, 
shared understanding of the concepts used to describe 
those attributes–for humans. It does this by providing 
terms used to label those concepts as well as natural lan
guage definitions of those terms. 

GO is part of an umbrella project that encompasses many 
other bio-ontologies called Open Biomedical Ontologies 
(OBO [5]). GO uses a knowledge representation language 
developed in-house–based on the Directed Acyclic Graph 
(DAG) [4]. The DAG is a common-place representation 
across computer science and other disciplines. What the 
edges and nodes in the DAG mean, their semantics, is 
determined by the specific user community. In some 
graphs, for example, a node represents a railway station, 
an atom, etc. As we will see in Section 4 there is a particular 
meaning to the edges and nodes used in representing GO, 
which have been determined by the GO Consortium. The 
GO's DAG is encoded using a syntax also developed by 
this group. The DAG has the tremendous advantage of 
simplicity and this has been a factor in enabling the Gene 
Ontology to develop to its current pre-dominant status 
[6]. 

GO's DAG is available in different formats, including 
MySQL tables, XML and OWL [7]. The most commonly 
used format is, however, the OBO file format, which is 
shared by most of the other OBO bio-ontologies [8]. 

The OBO file format not only enforces the syntax the OBO 
files should have, it also provides a set of elements that 
can be used to define semantics such as domain, range, 
is_symmetric, is_cyclic, is_transitive, etc. GO's DAG can 
be represented in the OBO file format, making use of a 
subset from all the possible elements available. Other bio
ontologies make use of other elements, and all those bio
ontologies (GO and other OBO bio-ontologies) are com
pliant with the OBO file format. 

The OBO site states that submitted ontologies can be pre
sented in the OBO file format (including GO's DAG) or in 
OWL. Being a collection of bio-ontologies, it would be 
useful to be able to translate ontologies between the two 
formats. Indeed, this has already been attempted in both 
the current version of DAG-Edit [9] and its successor, 
OBO-Edit [10], the COBrA ontology editor [11] and as an 
initial step in the Gene Ontology Next Generation 
(GONG) project [12,13]. 

The primary purpose in this paper is not to present a trans
lation of the DAG and OBO formats into OWL, but to 
show how such a translation is achieved. Such translation 
has already been done by the Gene Ontology consortium 
themselves [14]. We use the case study here as an illustra
tion of the use of a language's semantics to achieve the 
translation and in doing so show how a strict semantics is 
very important. In doing this, in Section 2 we explain why 
computer scientists, in particular, like to have a well-
defined semantics in their knowledge representation lan
guages. In Sections 3 and 4 we outline the semantics of 
GO's DAG representation and that of OWL. In Section 5, 
we attempt to reconcile the two representations. Section 7 
describes the implementation of this translation. 

2 Why do computer scientists care so much 
about semantics? 
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An example toy ontology of Person

in this representation as saying that 
son is either a Man or a Woman, but 
time"(at least not in this view of the 

"an instance of Per
not both at the same 
world!). In contrast, 

a computer might not have such an understanding. A 
human brings their world experience and their under
standing of terms such as "man" and "woman" to under
standing the representation–something a computer does 
not do. 

The need to capture knowledge with high-fidelity and 
interpret it unambiguously is enabled by having a repre
sentation language with well-defined semantics. In the 
same way that a C programming language compiler must 
unambiguously "understand" what each of the language 
components means in terms of constructing a programme 
that runs on a particular machine, so must a computer 
understand what each of the statements in the description 
of some knowledge represents. This is not the deeper mean
ing of the software (such as typesetting this document 
according to standard publishing principles) or what, for 
instance, an ontology is stating about biology. What is 
unambiguously interpreted is the relationship between 
the symbols being used. The (computer's) "understand
ing" is determined by the semantics of the language–be it 
a programming language or a knowledge representation 
language. As we will see below, just as a compiler needs to 
know exactly what a particular programming construct 
means, though not the intention of the programmer, a 
computer needs to be able to interpret what the "circles 
and arrows" mean in Figure 1. 

Figure 1 shows, on its right hand side, a simple ontology 
of Person, with two child classes of Man and Woman. As 
human users we understand, or believe we understand, 
what is being represented in such an ontology; "there are 
two kinds of Person, namely Man and Woman". We can, 
however, ask several supplementary questions about this 
ontology: 

Figure 1 
An example toy ontology of Person. The ontology takes a 
very simplified view of biological reproduction, for the sake 
of clarity. 

• Are all instances of Man also instances of Person? 

• Are Man and Woman the only kinds of Person that 
exist? 

• Is it possible for an instance of Person to be both a Man 
and a Woman? 

Now consider the left part of Figure 1 where we say that a 
Person has Gonads and that a Man has Testis. Again, we 
might ask ourselves several additional questions: 

• How many Testis does a Man have? 

• Can a Man only have Testis or may he have other parts? 

• Does having a Testis make an instance of Person a Man? 

• Are Testis the only gonads a Man can have? 

• Do all Man have Testis? 

• Are all Testis parts of Man? 

• May I say anything more about the parts that a Man has? 

Again, as human users of the ontology shown in Figure 1, 
we may understand, deduce, guess, or know the answers 
to these questions, or we may not; it is certain, however, 
that the computer will not do so. It is in the semantics of 
the knowledge representation language that the answers 
to such questions can be couched. It is part of the seman
tics of a language that says whether two children of a con
cept are overlapping, that is, is it possible for an instance 
of Person to be both a Man and a Woman. For a computer 
to know both the answer to this and that the only possible 
kinds of Person are Man and Woman, this has to either 
follow from the semantics of "is-a arrows" of our formal
ism, or it would have to be explicitly stated. Remember 
that the labels are just symbols; the computer does not 
understand those symbols, but the semantics of the lan
guage specifies, for instance, that we have symbols for 
class names (such as Man and Testis), that we have sym
bols for property names (such as has-part), and that the 
has-part-labelled arrow from Man to Testis means that 
each instance of the class called Man is has-part-related to 
at least one instance of the class called Testis. 

Returning to human users, the semantics of a program
ming language tells us how a computer will interpret our 
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ments in our knowledge base–and a precise semantics 
tells us this in an unambiguous way. 

The semantics might enable a human to interpret a state
ment as "each and every Man has at least one Testis", as 
there is no other interpretation possible; he or she can also 
bring their world knowledge to decide whether this is 
true. A user might believe they understand what is repre
sented in the ontology shown in Figure 1, but dangerous 
assumptions might be made when doing so and this is 
where ambiguity can occur. If the knowledge representa
tion language has a precise semantics, then the knowledge 
captured in the ontology expressed in that language can 
be decoded with precision; that is, we can interpret exactly 
what each statement in a language means. Precision is 
vital for humans since it enables them to agree on the 
meaning of a statement, and for the design of software to 
take into account a knowledge base since it enables the 
comparison of what the software actually does with what 
it is supposed to do according to the semantics of the under
lying knowledge representation language. For example, a 
precise semantics allows us to make statements about the 
soundness and completeness of a query answering tool: 
does it retrieve all and only those answers that should be 
retrieved according to the semantics? This can mean, how
ever, that we need to make an effort to understand the 
semantics [15]. 

3 OWL 
OWL-DL [3] is an ontology language based on description 
logics (DLs), which are a family of logic-based knowledge 
representation formalisms describing "objects", "classes" 
and the "relationships" between them [16]. Most DLs are 
fragments of standard first order logic. Originally, they 
were designed to give a unified logical basis to various 
well-known traditions of knowledge representation like 
frame-based systems and semantic networks [17]; they 
have found various applications in conceptual modelling 
and as a logical underpinning of ontology languages [16]. 
OWL-DL is based on an expressive DL, i. e., it provides a 
wealth of constructors to describe complex class expres
sions from atomic classes and relationships. In this sec
tion, we will only use a small portion of OWL-DL's 
expressiveness to highlight its core features. 

The semantics of OWL-DL is best understood when talk
ing about "objects" that are "instances" of "classes", and 
that are related to other objects via "relations". 

An object can be an instance of a class, and a class can be 
a sub-class of another class. For example, the object Rob
ert is an instance of the class Man which, in turn, is a sub
class of Person. The meaning of the sub-class relationship 
is that all instances of the sub-class, Man, are also 
instances of its super class(es), Person. In OWL-DL, to 

describe a class, we can describe it in terms of other classes 
(e.g., saying that Man are "Person and not Woman") and 
of properties of its instances. 

In Section 2, we have informally described an ontology 
with classes Man, Woman, Person, and others. In this sec
tion, we will formalize some of these classes in OWL-DL. 
We start by fixing the relationship between these three 
classes. First, we declare that Man and Woman are "dis
joint"; that is, it is not possible for an object to be an 
instance of both classes; this is expressed in the first state
ment of Figure 2. Similarly, we have to decide whether it 
is possible for an instance of Person to be neither an 
instance of Woman nor of Man. Assuming that this is not 
the case, we add the second statement of Figure 2. 
Together, these four statements imply that every person is 
either a man or a woman, but not both. 

Next, we make use of OWL-DL's ability to describe a class 
by describing its superclasses and how its instances are 
related to other objects. For example, the definition of the 
class Man in Figure 2 states that an instance of Man is a 
(instance of) Person which has an instance of Testis 
related to it via the has-part property. As this statement 
only says something about the existence of a relationship 
to another object, it is called an "existential" restriction– 
which is expressed in OWL-DL using the someValues-
From keyword. This asserts only that an instance of Man 
might have several parts that are testis, and other parts, as 
well–which is why we use the "amongst other things" in the 
paraphrase. For example, we have left it open in our 
description of Man whether a Man has ovaries, and so, 
with respect to the above definition of Man, a Man may or 
may not have ovaries. Additionally, to make this more 
precise, OWL-DL also allows "universal" restrictions to be 
made: e.g., in the definition of Woman, we say that an 
instance of Woman is related via the relation has-part only 
to instances of the complement of Testis, i.e., no part of a 
woman can be an instance of Testis. This is expressed 
using the allValuesFrom keyword and complementOf, 
another expressive means which corresponds to logical 
negation. 

In the definitions of the classes Man and Woman, we have 
used the keyword complete to indicate that the following 
expressions provide necessary and sufficient conditions 
for an object to be an instance of this class. That is, if we 
know that Robert is a Man, we also know that he has a 
part that is a testis and, if we find a person that has a part 
which is a testis, then this person is an instance of Man. 
This gives rise to the use of the "any" in the paraphrasing 
used in Figure 2. Replacing complete with partial means 
that only the first conclusion can be drawn. For example, 
Figure 3 contains a partial definition of Eunuch as those 
Persons that do not have Testis; so every Eunuch has no 
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Man and Woman in OWLFigure 2 
Man and Woman in OWL. Description and paraphrase provided. 

parts which are Testis, but not everyone with no Testis is 
a Eunuch. 

In all of these examples, we have only stated restrictions 
concerning Man and Woman and the objects to which 
they are related by the has-part relation. We have not 
restricted any other relationships we might choose to 
describe, such as has-mother, nor have we said anything 
about instances of Testis apart from the fact that they can 
be parts of a Man. After all, other species' male instances 
also have Testis, i.e., according to our ontology so far, an 
instance of Testis can be part of other objects or of noth
ing at all. 

In order to avoid such "homeless" testis, we can add a 
restriction which states that an instance of Testis is a part 
of a male animal. For this to have the desired effect, we 
also need to state that has-part is indeed the inverse of the 
relation part-of. Both statements are found in Figure 4. 

Due to its description logic underpinning, OWL-DL 
ontologies can be submitted to a DL reasoner which pro
vides reasoning services. Most importantly, a reasoner can 
decide the consistency of each class defined in the ontol
ogy and it can compute the implicit class hierarchy. For 
example, given the statements made so far, the reasoner 
infers that a Eunuch is, in fact, a subclass of Woman. This 
seems a little counter-intuitive, so we might also assert 
that a Eunuch is a subclass of Man. The reasoner will then 
tell us that Eunuch is inconsistent: there can be no 
instances of it. In this case, it is probably our definition of 
Man that is a poor model of reality. The inconsistency of 
the Eunuch forces us to re-examine this model. The pre
cise and explicit nature of models in OWL-DL allows us to 
check the knowledge we have captured as OWL-DL state
ments and have them to be interpreted correctly. 

For a complete description of OWL-DL, we refer the reader 
elsewhere [3]. Here, we have only used a small part of 
OWL-DL's expressiveness. In addition to using a relation 

in both directions (e.g., we have used the inverse direction 
of has-part via part-of), OWL-DL also enables us to state 
that a relation such as part-of is transitive (e.g., making a 
SemiNiferousTubule part of a Testis also makes it part of 
a Man) and to restrict the number of objects to which an 
instance of a class is related by a specific relationship (e.g., 
restricting the number of gonads a Person has to 2). It 
should be enough, however, to indicate that the well-
defined semantics of OWL-DL enables both the author 
and a computer to "understand" precisely what has been 
stated, and enable software such as a reasoner to deduce 
implicit knowledge from such representations [18,19]. 

4 GO and DAG 
The aim of this section is to elucidate the semantics of 
GO's encoding and not to examine the correctness of the 
biology captured in that encoding, which has been done 
elsewhere [20]. There is need, however, to sometimes look 
at the biology in order to understand the encoding. In 
contrast to OWL, the semantics of the representation used 
by the GO is not based on a logical formalism. Our under
standing of the GO DAG's semantics comes from its 
description in English [21], from consultation with mem
bers of the Gene Ontology Consortium, and from infer
ences made from the ontology itself. 

The GO is formalised as a Directed Acyclic Graph (DAG); 
see Figure 5 for an example of a DAG. More precisely, a 
"directed graph" is a structure with "nodes" and "edges", 
the latter being ordered pairs of nodes. In our case, both 
nodes and edges are "labelled": nodes with the term 
denoting the class they stand for, and edges with the kind 
of relationship that relates the corresponding classes. In 
GO's DAG, edge labels are restricted to is-a and part-of. 
Such a graph is acyclic, i.e., a DAG, if there is no path via 
edges that relates a node with itself–regardless of the 
edge's label, but using them only in a "forward" way. The 
graph in Figure 5 is a DAG, for example. In GO, the term 
labelling a node refers to this node and all of its children 
[21]. 
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Eunuch in OWL

Testis in OWL

Figure 3 
Eunuch in OWL. Description and paraphrase provided. 

In addition to this structured knowledge, the GO DAG 
contains additional information within nodes: a specific 
GO identifier for each node, as well as "exact", "broad", 
"narrow" and "related" synonyms for the term labelling a 
node, and possibly a definition of the meaning of the 
term. The latter are given in natural language, i.e., they are 
free text descriptions that "define" what a term means. As 
a consequence, they may come with all the ambiguities of 
natural language, and we can sometimes not distinguish, 
for example, between a necessary condition and one that 
is necessary and sufficient. GO definitions are used by 
annotators and GO curators alike when using GO, and are 
not intended to be used by an automated reasoning tool 
to draw new inferences. The format for the GO DAG also 
allows for some provenance information, such as author, 
source, etc. but this detail is beyond the scope of this arti
cle, where the emphasis is on the main ontological com
ponents of the representation. 

Next, we discuss what kind of statements can be made in 
GO's DAG representation. Firstly, GO uses two relation
ships, is-a and part-of. Figure 5 shows an example of a GO 
DAG with both kinds of relationships. The is-a relation
ship points from a child (more specialised) to a parent 
(more generalised) term [21]. We note that, if a parent has 
more than one child, there is no way to distinguish 
between possibly overlapping (e.g., Carnivores and Mam
mal) and disjoint (e.g., Man and Woman) classes [21]. 
When interpreting the GO documentation, care should be 
taken because the part-of relationship, in GO's usage, 
talks about parts and parents, not parts and wholes, as is 
ontologically conventional [22]. In Figure 5, we can see 
what some [13,23] have called "orphan" nodes, i.e., a 
node that is part-of another node, but is not a kind of any 
node. Conventionally, this would be a child with no par
ent, i.e., an orphan, and the GO curators are undertaking 
an effort to remove such orphans since they indicate an 

imprecise modeling (personal communication with Ame
lia Ireland from the Gene Ontology Consortium). 

There are (at least) four readings of a part-of relationship 
in GO's DAG [21]. Considering the part-of edge from a 
node labelled P to a node labelled W, we have the follow
ing possibilities: 

1. The part-of relationship makes no assumption of the 
existence of the relationship between the nodes in either 
direction. Any P may or may not be part of a W and any 
W may or may not have a part that is a P. An example is 
Person and Testis. Note that this need not contradict the 
directed nature of the arcs. The part-of is directed, but 
these semantics tell us how it is to be interpreted, particu
larly with respect to whether such a relationship exists or 
not. 

2. Wherever a P exists, it is as part of a W, e.g., Nucleus and 
Cell. 

3. Wherever a W exists, it has a part that is a P, e.g., Avian-
RedBloodCell and Nucleus. 

4. Wherever a P exists, it is a part of a W and wherever a W 
exists, it has a part that is a P. This reading is simply the 
conjunction of readings 2 and 3. An example of this is 
NuclearMembrane and Nucleus. 

In the GO documentation [21] the "true path rule" states 
that "the pathway from a child term all the way up to its 
top-level parent(s) must always be true". This should be 
true for both kinds of relationship in GO. For the is-a rela
tionship, this means that an individual labelled as Man 
could also legitimately be labelled as Person or Animal. 
So, a gene product labelled as a photoreceptor activity is 
also a kind of signal transducer activity and finally, a 

Figure 4 
Testis in OWL. Description and paraphrase provided. 
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A Gene Ontology Directed Acyclic Graph (DAG)Figure 5 
A Gene Ontology Directed Acyclic Graph (DAG). The DAG has both is-a and part-of relationships. 

molecular function. Thus, the "true path rule", when 
working along is-a relationships implies that we read 
these relationships in a monotonic way, i.e., every instance 
of a class is also an instance of its superclasses, without 
exceptions. 

For the part-of relationship, this has several implications. 
Firstly, it means that this relation is assumed to be transi
tive, e.g., if a gene is part of a nucleus which, in turn, is part 
of a cell, then this gene is part of this cell. This assumption 
is widely accepted [24]. Secondly, this means that we have 
to choose one of the readings 2 or 4 mentioned above. 
The GO editing style guide mentions that the majority of 
part-of links in GO conform to reading 2; readings 1 and 
3 are not used as they would violate the true path rule in 
GO [21]. 

If we restrict our attention to reading 2, then it is not dif
ficult to verify that the true path rule is even correct when 
we combine both kinds of relationship in one path: a path 

using both is-a and part-of becomes indeed part-of. The 
GO DAG editing style guide warns explicitly against 
employing a reading different from the second one since 
such an "abuse" might yield unwanted consequences via 
the true path rule, and suggests that the best strategy is to 
re-structure GO with new nodes and relationships so that 
only reading 2 is employed and the true path rule can be 
employed correctly. As a consequence, while we might 
have stated that a Testis is part of Man, we cannot say any
thing about a Man having part Testis since this would 
involve reading 3. 

5 Reconciling the two representations 
In this section we reconcile the semantics of OWL-DL and 
GO's DAG: we analyse how one can be translated to the 
other and where, in that process, there could be problems. 
To perform such a translation it is necessary to understand 
the semantics of source and target languages and the aim 
is, of course, to say the same in each representation. 
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We start by assessing a technical issue that does not affect 
the semantics, but is important: naming conventions. 
OWL-DL has got its own naming conventions: non alpha
numeric characters or white spaces are not allowed in the 
names of the classes, only underscores and alpha-numeric 
characters. This presents a problem since many GO term 
names include non-alphanumeric characters. A solution 
to this problem is to translate any non-alphanumeric 
character into a string that spells out the disallowed: for 
example (-)-borneol dehydrogenase activity in GO 
would become 
PAR_MINUS_PAR_MINUS_borneol_dehydrogenase_ac 
tivity in OWL. There is a choice to be made as to whether 
the term or GO identifier become the class label. The id is 
the primary identifier (GO:0047503), but the term is the 
more readable. Whatever the decision, one can be repre
sented using the class label and one using an assertion on 
an "annotation property": in OWL-DL, we can declare a 
property to be an annotation property, and then use such 
a property to attach information to classes–without them 
being taken into account by an OWL-DL reasoner. That is, 
assertions on annotation properties act as comments from 
a DL point of view, yet they can be displayed to the biolo
gist as a piece of information on this class–just as in GO. 
The most suitable annotation property for labelling a term 
with its id is rdfs:label, which is already included in OWL. 

We cannot translate the natural language definitions asso
ciated with a term into OWL-DL axioms. These definitions 
might be expressible in OWL, yet we cannot automatically 
generate the correct OWL-DL expressions from a piece of 
English text. We can, however, capture them using 
another assertion on an annotation property. 

We can capture the synonyms and other alternative labels 
given for a term in a variety of ways: 

1. As assertions on an annotation property; 

2. Using equivalence, subclass and superclass axioms; 

3. A mixture of approaches one and two. 

In the first approach, we can use a series of annotation 
properties such as exact synonym, broad synonym, nar
row synonym and related synonym. 

In the second approach, if S1,...,Sn are the exact synonyms 
given for a term T, then we translate this into an equiva
lence axiom EquivalentClasses(T S1...Sn). Thus, each 
instance of Si is also an instance of T and each Sj and, vice 
versa, each instance of T is also an instance of each Si. 

In OWL-DL, an equivalence axiom Equivalent 
Classes(T S) means that the classes T, S involved have 

the same extent of instances. It can further be argued that 
they are therefore the same class. If the synonyms are 
exact, this is logically correct, though the ontologist might 
be presented with a plethora of classes in the user inter
face. It can be argued, however, that for the user this is 
simply a presentational issue, and that the user interface 
should collapse equivalent classes. Some methodologies, 
such as [25], suggest that a minimal number of classes 
should be used in an ontology. Use of equivalent classes 
does not break such an edict if we interpret classes with 
the same extent of objects as the same class (which is, after 
all, what is being said). It should be remembered, as is the 
message all through this article, that the reader should be 
wary of conflating presentation and the real semantics of 
a statement. Just as assumptions can be made about the 
presentation in Figure 1, so can assumptions be made 
about syntax showing "multiple" classes in an OWL-DL 
file. 

A more significant argument is that this solution conflates 
a class level argument with a lexical argument. It should 
be remembered that labels on classes can change, while 
the class itself is unaltered. One only has to think, for 
instance, of the different French, German and English 
words for Leg that all refer to the same class of instances. 
Also, the equivalence axiom approach breaks when the 
synonyms are not exact synonyms. It could then be argued 
that the synonym labels should not be used, but one of 
narrow, broad or related. Hence the equivalence axiom 
solution is slightly sub-optimal since we would have pre
ferred to have only a single class and more than one name 
for it, yet this would have required some expressiveness 
not (yet) available in OWL-DL, and the second approach 
has largely the same effect. In a similar manner to the 
equivalence axiom, if we have an alternative name S that 
is "broader than" a term T, then we add a statement Sub 
classOf(T S), and if we have an alternative name S that 
is "narrower than" a term T, then we add a statement 
SubclassOf(S T). 

Please note that the second approach does not take into 
account related class labels which are not either exact, nar
row nor broad, like virulence and pathogenesis. In this 
case, we can only suggest to use the first approach. In 
approach two, we cannot completely translate all class 
labels in an OWL-DL form, because the related-to tag has 
no reasonable representation as either subclass axiom or 
restriction upon a class, so we would have to use approach 
three, with a mixture of logical axioms and one assertion 
on an annotation property. 

The use of the extra equivalence and subclass axioms has 
a logical argument and can be useful. When a reasoner is 
applied to such a translation, inconsistencies can be 
found. If the translator, however, feels that this approach 
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mixes lexical and logical issues then only approach 1, 
using only assertions on annotation properties is the most 
valid approach. 

Next, the DAG is-a relationship translates directly into 
OWL's sub-class relationship since they have the same 
semantics, i.e., every instance of a class is also an instance 
of each of its superclasses. 

We can assume that subclasses in the DAG representation, 
like OWL subclasses, overlap by default, i.e., if C1 and C2 
are subclasses of the same superclass, then we cannot 
exclude that there exists an object that is an instance of 
both C1 and C2. This will capture most of the biology in 
GO correctly. However, we might want to examine the GO 
and check, for each pair of subclasses, whether we cannot 
provide more information. For example, we should ask 
ourselves whether it is possible for an individual molecu
lar function to be both function-x and function-y at the 
same time. If this is not the case, then we should make this 
knowledge explicit in the OWL ontology through the 
axiom DisjointClasses(function-x function-y). 

In a similar manual step, we should add covering con
straints where appropriate. A covering axiom means that, 
if an object is a member of a class, then it must be a mem
ber of one of the classes that it is asserted to "cover". That 
is, if Person covers Man and Woman, then any object that 
is a Person must be either a member of Man or a member 
of Woman, but it is possible not to have enough informa
tion to know to which of these classes that object belongs. 
For a biological example, if Enzyme activity covers all the 
enzyme functions, then an enzyme activity must be one of 
those activities; a new enzyme activity would be inconsist
ent with the ontology. The GO DAG representation does 
not allow such axioms and we believe that biologists 
would not use them widely even if it were possible 
because such axioms would require more knowledge than 
is usually available. An assumption of no covering is, 
therefore, not unreasonable. 

Since the GO DAG does not capture disjointness or cover
ing constraints, its inclusion is a matter of capturing bio
logical knowledge, and there is no way of simply 
automating knowledge of disjointness. An automatic 
translation is possible if it is assumed that there is no "cov
ering" and all sibling classes can possibly overlap. 

5.1 Capturing the GO DAG part-of in OWL 
OWL-DL provides a language that allows us to use as 
many properties as we want, and we can constrain their 
interpretation in a number of ways using existential, uni
versal, or cardinality restrictions, and we can make state
ments about them such as one property being implied by 
another one or that a property is transitive. In Section 4, 

we have discussed four possible readings of the GO DAG's 
part-of links, and we show here how these different inter
pretations can be captured via translations to OWL-DL 
axioms. The advantage here is that, rather than using a sin
gle construct which may be read in a number of different 
ways, OWL-DL allows us to distinguish between these dif
ferent readings. We can then use different readings of the 
part-of relationship (e.g., those discussed in Section 4), 
without any danger of confusion. In the following exam
ples, we consider how we capture the particular semantics 
of the assertion P part-of W. 

Reading 1 does not impose any restrictions on an 
instance of P or W as they only deal with the potential for 
the relationship. If one insists, one can translate this read
ing into an OWL-DL axiom 

SubClassOf (P UnionOf ((restriction(part-of 
someValuesFrom W)) 

ComplementOf (restriction(part-of someVal 
uesFrom W))), 

yet this statement does not impose any constraints: 
indeed, it is equivalent to saying that P is a subclass of 
OWL:thing or saying nothing. In contrast, impossibili
ties do impose constraints, and we can express them in 
OWL-DL: to express that a P can never be part of a W, we 
can add the OWL-DL axiom 

SubClassOf (P ComplementOf (restriction(part
ofallValuesFromW))) 

Reading 2 Whenever a P exists, it is part of a W. This can 
be represented through the following axiom: 

SubClassOf(P restriction(part-of someValues 
From W)), 

stating that, for each and every instance of P, there must be 
an instance of W of which it is a part. For example, every 
instance of SemiNiferousTubule is a part of an instance of 
Testis. 

Reading 3 Whenever a W exists, it has some P as a part. 
This can be represented through the following axiom: 

SubClassOf (W restriction(has-part someVal 
uesFrom P)), 

provided that we have declared that the property has-part 
is the inverse of part-of, as in Figure 4 (many description 
logics allow the definition and use of inverse relation
ships; in OWL there is no inverse property operator for use 
in expressions, but we can introduce and define properties 
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as inverses). Inverse properties are interpreted as one 
would expect: two individuals a and b are related via a 
property P if and only if b and a are related via the inverse 
of P. For example, we can use such an axiom to state that 
every instance of Testis has a part that is an instance of 
SemiNiferousTubule. Please note that this statement and 
the one given as an example for the third reading are inde
pendent in the sense that they do not imply each other. 

Reading 4 This is simply a conjunction of 2 and 3, and we 
can thus encode it by including both axioms introduced 
above. 

As mentioned before, GO employs reading 2 for part-of 
links. Hence we translate each such link into the corre
sponding OWL statement. Additionally, we can then 
manually add more statements, e.g., in cases where our 
biology tells us that reading 4 would be more precise. 
These various semantics for the part-of relationship used 
in the GO DAG pre-date the OBO relationships described 
below in Section 6. In the OBO relationships, as we shall 
see, the semantics are more strictly defined and the trans
lation to an existential property on a class, as in interpre
tation above, is clear. 

Recall that, in GO, orphan nodes are those that do not 
have any outgoing is-a link. In OWL-DL, the correspond
ing classes do not cause any problems since they will be 
automatically placed in the class hierarchy under the most 
general class called OWL:thing. There are, therefore, no 
orphan nodes in an OWL-DL ontology and any modelling 
that makes any biological assertions to overcome placing 
subclass axioms to OWL:thing must be part of a process 
independent of the translation of representation. 

That completes our discussion of the translation of GO's 
DAG into OWL-DL. We can see, therefore, that it is possi
ble to represent what is captured in the GO in OWL-DL 
with making only two assumptions, both of which are rea
sonable. The OWL-DL representation will capture the 
same knowledge as the GO DAG. In addition, we can even 
distinguish between the uses of readings two and four in 
the part-of relationship in GO. 

5.2 Translating OWL-DL back into DAG 
As we have observed above, the DAG's is-a relationship 
and the subclass relationship in an OWL-DL ontology 
have the same reading. Hence we can take an OWL-DL 
representation of a DAG ontology, ask a reasoner such as 
FaCT++, Pellet or Racer [26-28] to infer all subclass rela
tionships, and then translate the resulting class hierarchy 
back into DAG format. To be more precise, for each class 
name A, we first ask the reasoner to return all classes that 
are equivalent (if we have used the translation of syno
nyms using equivalence axioms described above) with A. 

Then we choose a "main" node label A' from A and the 
reasoner's answer, and create a node labelled A' whose 
exact synonyms are set to A (in case that A' is different 
from A) and the reasoner's answer (possibly minus A'). As 
a result of this step, we obtain a set of nodes labelled with 
terms and exact synonyms. Next, for each pair of node 
labels A, B, we ask the reasoner whether A is a subclass of 
B. If this is the case, we add an is-a link from A to B, oth
erwise we do not do anything. Similarly, for each pair of 
node labels A, B, we ask the reasoner whether A is a sub
class of restriction(part-of someValuesFrom B). If 
this is the case, we add a part-of link from A to B, other
wise we do not do anything. Narrow and broad synonyms 
can be obtained by looking for subclasses and super
classes, respectively, yet this would be exactly the same 
information as represented in the is-a structure and thus 
redundant. Finally, those features of the GO DAG that we 
have translated to assertions on annotation properties can 
be retrieved and back-translated appropriately. 

As a result, we obtain a graph whose nodes are labelled 
with names and sets of synonyms, and whose edges are 
labelled with is-a and part-of. If any axioms have been 
added to the GO in OWL, such as disjointness or covering 
axioms, these are retrieved through calls to the reasoner. 
Disjointness can be represented in the OBO format (see 
Section 6 below), but covering cannot. So, the back-trans
lation of an augmented GO in OWL might well be lossy; 
i.e., they are lost in translation. This would also be true of 
all those features of OWL-DL that cannot be expressed in 
the OBO format. In general, this graph might not neces
sarily be acyclic, i.e., it may contain cycles. Since the GO 
DAG only allows part-of and not has-part relationships, 
however, common sense tells us that we should obtain an 
acyclic graph: a cycle would need to involve a part-of link 
since pure is-a cycles have been collapsed into a single 
node by construction. Now a cycle involving a part-of 
link, say from a node labelled A, would mean that, in 
every world conforming to our ontology, we have an infi
nite chain of instances ai of A with a1 part-of a2 part-of a3 
part-of..., which clearly clashes with our intuition. How
ever, if other relationships are used in the DAG, such as 
has-location or interacts-with, a cycle could easily arise 
(e.g. a protein that interacts with itself). As we will see 
below (Section 6) the wider OBO language allows cycles. 

6 Representing other OBO relationships in 
OWL 
Open biomedical Ontologies (OBO [5]) is a collection of 
bio-ontologies, and they come with a core set of biologi
cal properties for use within OBO ontologies [29,30]. The 
aim is to have consistent interpretation and use of proper
ties representing biological relationships. Here we 
describe what aspects of the OBO relationships can be 
represented in OWL. The OBO relationships talk about 
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properties at three levels, and we can easily distinguish 
these relationships in OWL: 

1. Stating that an individual a is an instance of a class C: 
this is expressed by 

Individual(a type C) 

2. Stating that an individual a is related via a certain prop
erty P with an individual b: this is expressed by 

Individual(a P b) 

3. Stating that each instance of a class C is related via a 
property P to some instance of a class D. 

SubClassOf(C restriction(P someValuesFrom 
D)) 

In our experience, the third of the above relationships is 
the most commonly used in building ontologies based on 
classes, where the (all – some) form of definition used in 
the OBO relationships fits perfectly with the DL style of 
relationships [31]. The OBO relationships, so far at least, 
are therefore readily mapped to a restriction with existen
tial quantification. The OBO relationships are of the third 
kind, but built upon a series of primitive relationships 
between instances such as part-of holding between two 
continuants; located-in holding between a continuant 
and a region; derives-from holding between two continu
ants; etc. 

As mentioned, these basic OBO relationships can be 
expressed in OWL. In OBO, they are extended, however, 
to take into account both temporal and spatial aspects, 
none of which can be expressed in OWL: for example, 
OWL allows us to state that every instance of C must be 
located-in an instance of D, yet we can not express that an 
instance of C' must eventually be located-in an instance of 
D or that an instance of E will eventually be an instance of 
a class F. For example, we might want to express that Adult 
is –a–cont child because an instance of the class Adult 
has at some previous time point been a Child. Since OWL-DL 
takes an entirely static view of the world, such a statement 
cannot be made in OWL. There are extensions of (the DL 
underlying) OWL-DL that can deal with these temporal 
aspects [32], but the reasoners used for OWL-DL do not 
handle these logics nor does the OWL-DL syntax or 
semantics accommodate these temporal aspects. 

The OBO file format includes several aspects that should 
be translated into OWL; some of them are required 
aspects, others are optional, see Table 1. Some of these 
aspects have already been analysed in this paper for the 
GO's DAG: the synonyms (related_synonym, 

exact_synonym, broad_synonym and 
narrow_synonym), is_a (sub-class relationship in OWL), 
relationship (existential restrictions in OWL, as already 
described in the case of part-of) and is_transitive (transi
tive properties in OWL). For the rest, the translation is 
provided in Table 1. It is intended that the OBO language 
has the same semantics as OWL (personal communica
tion with Chris Mungall from the Gene Ontology Consor
tium) and this is the approach we have adopted, though 
the documentation was at times unclear. 

In Table 1, many of the OBO entries are described as being 
"extra-logical" in OWL-DL. This means that they are not 
part of the descriptions of the objects in a class. For 
instance, a GO id is a description of the class, not a 
description of the instances or objects of that class. OWL
DL can currently only represent these extra-logical aspects 
with the annotation properties mentioned earlier in Sec
tion 5. 

The OBO optional tag is_cyclic is intended to convey that 
a relationship can be used to form cycles (such as, inter
acts-with forming cycles of interacting proteins). Proper
ties in OWL-DL are inherently free to do this and so 
is_cyclic could only be preserved as another annotation 
property. 

The OBO file format allows for property hierarchies (for 
example in the Sequence Ontology [33]), but the DAG 
does not use them. For the wider OBO representation, it 
is perfectly possible to translate property hierarchies. 

7 Implementation 
This translation has been implemented as a Java (1.5) pro
gramme [34]. It takes a GO ontology expressed in the 
OBO 1.0 format [8] and produces the same ontology 
expressed in OWL DL in the RDF/XML syntax [35]. 

The OBO flat file is read and the WonderWeb OWL API 
[36] is used to create the OWL-DL ontology. The OBO flat 
file is parsed and loaded into memory as an intermediate 
representation that is later explored by the programme 
and each OBO element is used, as appropriate, to supply 
parameters to operations on the WonderWeb API. For 
example, two class identifiers are supplied to the subclass 
operation to create an OWL subclass axiom; the id of the 
OBO term is supplied as a value for rdfs:label property; 
the second half of the OBO part-of relationship is sup
plied as a filler for an existential restriction on the part-of 
object property; and so forth. Finally a new OWL file in 
RDF/XML syntax is created on the hard disk. 

The translation uses the approach 2 to deal with syno
nyms: exact synonyms, narrow synonyms and broad syn-
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Table 1: Translation of OBO aspects into OWL. 

OBO stanza OWL Required/Optional 

name OWL-DL class name required 
id Extra-logical required 
alt_id Extra-logical optional 
namespace OWL namespace optional 
definition Extra-logical optional 
comment Extra-logical optional 
subset Extra-logical optional 
related_synonym "Some values from" restriction on optional 

related_synonym 
exact_synonym Equivalent class optional 
broad_synonym Superclass optional 
narrow_synonym Subclass optional 
xref_analog Extra-logical optional 
xref_unknown Extra-logical optional 
is_a Subclass optional 
relationship "Some values from" restriction on object optional 

property 
is_obsolete Extra-logical optional 
use_term Object property optional 
domain domain optional 
range  range  optional
is_cyclic (see Section 6) optional 
is_transitive transitive optional 
is_symmetric symmetric optional 

onyms are translated as new equivalent classes, subclasses 
and superclasses, respectively. 

8 Discussion 
In this paper we have attempted to convey why computer 
scientists seem to care so much about a representation 
language's semantics. In essence, it is in order to prevent 
ambiguity of interpretation (at a far simpler level than 
intention) of statements in the language. We only have to 
think back to our toy informal ontology for Man and 
Woman to see the trouble that imprecision can give. One 
only has to substitute genes, proteins, processes, etc. into 
these types of informal statement to realise the wide vari
ety of interpretations that can be placed on ill-defined 
statements. "P53 activates transcription"–is all transcrip
tion activated by P53? do all P53 activate transcription? In 
this sense formality is very useful. OWL is, of course, not 
the only formal language. Our point here is, however, to 
exemplify the benefits of such formality in communicat
ing to humans and computers. 

By examining the semantics of OWL-DL and GO's DAG, 
we have seen that converting from GO DAG to OWL-DL 
presents no real problem, as long as we are willing to 
make assumptions on disjointness and covering. We can 
even translate our OWL-DL ontology back into DAG. 
There are various benefits of having an OWL-DL version 
of a DAG ontology. Firstly, we can say things in OWL-DL 
that we cannot say in DAG, and we can thus make prop

erties and relations explicit. For example, we can express 
covering between classes, we can use properties in both 
directions, and we can formulate necessary and sufficient 
definitions of classes. Secondly, these statements are ame
nable to machine interpretation: that is, we can have an 
OWL-DL reasoner classify our ontology and detect incon
sistent classes. This can help us find modeling errors in 
our ontology, e.g., when the reasoner comes back with un
intended inferred is-a links or inconsistent classes, and 
thus supports the design of a good ontology. Thirdly, we 
can annotate documents with complex OWL-DL class 
descriptions and have the reasoner take these into account 
when answering queries. That is, we are no longer 
restricted to the classes present in the ontology, but we can 
make them up on-the-fly and have these descriptions 
taken into account for query answering. In DL style ontol
ogies, it is common for classes defined in an ontology to 
be the building blocks of other classes, rather than enu
merating all the possible classes. Obviously, converting an 
ontology that comes with such expressiveness and infer
ence services to one that lacks them might lead to an 
impoverished ontology. Fourthly, we can extend our 
translations in a straightforward way to other OBO rela
tions. 

In summary, we have described the role of a language's 
semantics. We have also described the role and benefits of 
a representation language with well-defined semantics 
and reasoning support. The core of the argument is that, if 
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ontologies are to fulfill their role of providing a common, 
shared understanding of a knowledge domain, then the 
statements within that ontology have to be able to be 
interpreted unambiguously. We then examined the 
semantics of GO's DAG and compared it with OWL-DL. 
Our results of examining the expressive means provided 
by both formalisms and their semantics is that conver
sions between the OBO representation and the GO DAG 
subset is possible (within some constraints) and leads to 
interesting new possibilities. 
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