
MIT OpenCourseWare
http://ocw.mit.edu

20.453J / 2.771J / HST.958J Biomedical Information Technology��
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17311682
http://ocw.mit.edu
http://ocw.mit.edu/terms

BioMed CentralBMC Bioinformatics

ss

Commentary Open Acce

Understanding and using the meaning of statements in a
bio-ontology: recasting the Gene Ontology in OWL
Mikel Egaña Aranguren1, Sean Bechhofer1, Phillip Lord2, Ulrike Sattler1 and
Robert Stevens*1

Address: 1School of Computer Science, University of Manchester, Manchester, UK and 2School of Computing Science, University of Newcastle,
Newcastle, UK

Email: Mikel Egaña Aranguren - mikel.eganaaranguren@cs.man.ac.uk; Sean Bechhofer - sean.bechhofer@manchester.ac.uk;

Phillip Lord - phillip.lord@newcastle.ac.uk; Ulrike Sattler - sattler@cs.man.ac.uk; Robert Stevens* - robert.stevens@manchester.ac.uk

* Corresponding author

Published: 20 February 2007 Received: 17 October 2006

BMC Bioinformatics 2007, 8:57 doi:10.1186/1471-2105-8-57
Accepted: 20 February 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/57

© 2007 Aranguren et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract
The bio-ontology community falls into two camps: first we have biology domain experts, who
actually hold the knowledge we wish to capture in ontologies; second, we have ontology specialists,
who hold knowledge about techniques and best practice on ontology development. In the bio
ontology domain, these two camps have often come into conflict, especially where pragmatism
comes into conflict with perceived best practice. One of these areas is the insistence of computer
scientists on a well-defined semantic basis for the Knowledge Representation language being used.
In this article, we will first describe why this community is so insistent. Second, we will illustrate
this by examining the semantics of the Web Ontology Language and the semantics placed on the
Directed Acyclic Graph as used by the Gene Ontology. Finally we will reconcile the two
representations, including the broader Open Biomedical Ontologies format. The ability to
exchange between the two representations means that we can capitalise on the features of both
languages. Such utility can only arise by the understanding of the semantics of the languages being
used. By this illustration of the usefulness of a clear, well-defined language semantics, we wish to
promote a wider understanding of the computer science perspective amongst potential users
within the biological community.

1 Background
In this paper, we explain the role of a Knowledge Repre
sentation (KR) language's semantics. To illustrate the util
ity of language semantics we will use it to explore the
reconciliation of the representations used for the Gene
Ontology (GO) [1] and that used for the ontologies repre
sented in the W3C recommendation Web Ontology Lan
guage (OWL [2]). A language's semantics is often a great
concern to computer scientists, a concern that is some

times lost on biologists. The goal of this paper is, there
fore, to explain the role of language semantics to a
community outside computer science (this albeit anecdo
tal evidence is built up over many years of teaching and
tutorials in this domain between the two disciplines). In
the text of this document Boldface font is used to refer to
objects and logical keywords within an ontology and Ital
ics Boldface font for terms that have a definition available
in the glossary (see Additional file 1).
Page 1 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17311682
http://www.biomedcentral.com/1471-2105/8/57
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/
mailto:-sattler@cs.man.ac.uk;

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
Different knowledge representation languages provide dif
ferent means to make statements about the knowledge to
be captured in different ways. The semantics of these lan
guages tell both humans and computers how to interpret
statements made in those languages. Different languages
have varying expressivity and computational properties,
hence the corresponding tools can offer different querying
and reasoning mechanisms; consequently there is often a
need to exchange between languages to take advantage of
their characteristics. For example, the Web Ontology Lan
guage OWL-DL [3] comes with rather high expressivity
and some powerful reasoning services. As a consequence,
we can annotate data using terms (and expressions built
from these terms) whose meaning is defined in some
OWL-DL knowledge base, usually called an "ontology",
and then use a software application called a reasoner to
query that data. The reasoner will take into account the
definitions of the terms when answering queries, thereby
providing flexible access to that data. When translating a
knowledge base from one language to another, we have to
make sure that the knowledge captured in statements in
one language is changed as little as possible when trans
forming them into statements in another language.
Hence, the semantics of one language needs to be recon
ciled with the semantics of the other.

The GO has become the de facto standard for describing
the principal attributes (the molecular function, biologi
cal process, and cellular component) of knowledge about
gene products across many databases [1,4]. It succeeds in
the major aim of an ontology in providing a common,
shared understanding of the concepts used to describe
those attributes–for humans. It does this by providing
terms used to label those concepts as well as natural lan
guage definitions of those terms.

GO is part of an umbrella project that encompasses many
other bio-ontologies called Open Biomedical Ontologies
(OBO [5]). GO uses a knowledge representation language
developed in-house–based on the Directed Acyclic Graph
(DAG) [4]. The DAG is a common-place representation
across computer science and other disciplines. What the
edges and nodes in the DAG mean, their semantics, is
determined by the specific user community. In some
graphs, for example, a node represents a railway station,
an atom, etc. As we will see in Section 4 there is a particular
meaning to the edges and nodes used in representing GO,
which have been determined by the GO Consortium. The
GO's DAG is encoded using a syntax also developed by
this group. The DAG has the tremendous advantage of
simplicity and this has been a factor in enabling the Gene
Ontology to develop to its current pre-dominant status
[6].

GO's DAG is available in different formats, including
MySQL tables, XML and OWL [7]. The most commonly
used format is, however, the OBO file format, which is
shared by most of the other OBO bio-ontologies [8].

The OBO file format not only enforces the syntax the OBO
files should have, it also provides a set of elements that
can be used to define semantics such as domain, range,
is_symmetric, is_cyclic, is_transitive, etc. GO's DAG can
be represented in the OBO file format, making use of a
subset from all the possible elements available. Other bio
ontologies make use of other elements, and all those bio
ontologies (GO and other OBO bio-ontologies) are com
pliant with the OBO file format.

The OBO site states that submitted ontologies can be pre
sented in the OBO file format (including GO's DAG) or in
OWL. Being a collection of bio-ontologies, it would be
useful to be able to translate ontologies between the two
formats. Indeed, this has already been attempted in both
the current version of DAG-Edit [9] and its successor,
OBO-Edit [10], the COBrA ontology editor [11] and as an
initial step in the Gene Ontology Next Generation
(GONG) project [12,13].

The primary purpose in this paper is not to present a trans
lation of the DAG and OBO formats into OWL, but to
show how such a translation is achieved. Such translation
has already been done by the Gene Ontology consortium
themselves [14]. We use the case study here as an illustra
tion of the use of a language's semantics to achieve the
translation and in doing so show how a strict semantics is
very important. In doing this, in Section 2 we explain why
computer scientists, in particular, like to have a well-
defined semantics in their knowledge representation lan
guages. In Sections 3 and 4 we outline the semantics of
GO's DAG representation and that of OWL. In Section 5,
we attempt to reconcile the two representations. Section 7
describes the implementation of this translation.

2 Why do computer scientists care so much
about semantics?

ge representation community within compu
as the aim of representing knowledge in a

understandable by humans and one that is
ally amenable. Computers, of course, do not

me facility to "understand" knowledge cap
ntology as do the human users of that ontol
mputer, the term labeling a concept is not

ible. For illustration (see Figure 1) we will use
y simplistic ontology that is by no means bio
his article a toy example is able to convey the
antics more easily than a "true" biological

at would obscure the message. Taking the
igure 1, a human might read the information

The knowled
ter science h
form both
computation
have the sa
tured in an o
ogy. To a co
comprehens
a deliberatel
logical. For t
point of sem
example th
example in F
Page 2 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
An example toy ontology of Person

in this representation as saying that
son is either a Man or a Woman, but
time"(at least not in this view of the

"an instance of Per
not both at the same
world!). In contrast,

a computer might not have such an understanding. A
human brings their world experience and their under
standing of terms such as "man" and "woman" to under
standing the representation–something a computer does
not do.

The need to capture knowledge with high-fidelity and
interpret it unambiguously is enabled by having a repre
sentation language with well-defined semantics. In the
same way that a C programming language compiler must
unambiguously "understand" what each of the language
components means in terms of constructing a programme
that runs on a particular machine, so must a computer
understand what each of the statements in the description
of some knowledge represents. This is not the deeper mean
ing of the software (such as typesetting this document
according to standard publishing principles) or what, for
instance, an ontology is stating about biology. What is
unambiguously interpreted is the relationship between
the symbols being used. The (computer's) "understand
ing" is determined by the semantics of the language–be it
a programming language or a knowledge representation
language. As we will see below, just as a compiler needs to
know exactly what a particular programming construct
means, though not the intention of the programmer, a
computer needs to be able to interpret what the "circles
and arrows" mean in Figure 1.

Figure 1 shows, on its right hand side, a simple ontology
of Person, with two child classes of Man and Woman. As
human users we understand, or believe we understand,
what is being represented in such an ontology; "there are
two kinds of Person, namely Man and Woman". We can,
however, ask several supplementary questions about this
ontology:

Figure 1
An example toy ontology of Person. The ontology takes a
very simplified view of biological reproduction, for the sake
of clarity.

• Are all instances of Man also instances of Person?

• Are Man and Woman the only kinds of Person that
exist?

• Is it possible for an instance of Person to be both a Man
and a Woman?

Now consider the left part of Figure 1 where we say that a
Person has Gonads and that a Man has Testis. Again, we
might ask ourselves several additional questions:

• How many Testis does a Man have?

• Can a Man only have Testis or may he have other parts?

• Does having a Testis make an instance of Person a Man?

• Are Testis the only gonads a Man can have?

• Do all Man have Testis?

• Are all Testis parts of Man?

• May I say anything more about the parts that a Man has?

Again, as human users of the ontology shown in Figure 1,
we may understand, deduce, guess, or know the answers
to these questions, or we may not; it is certain, however,
that the computer will not do so. It is in the semantics of
the knowledge representation language that the answers
to such questions can be couched. It is part of the seman
tics of a language that says whether two children of a con
cept are overlapping, that is, is it possible for an instance
of Person to be both a Man and a Woman. For a computer
to know both the answer to this and that the only possible
kinds of Person are Man and Woman, this has to either
follow from the semantics of "is-a arrows" of our formal
ism, or it would have to be explicitly stated. Remember
that the labels are just symbols; the computer does not
understand those symbols, but the semantics of the lan
guage specifies, for instance, that we have symbols for
class names (such as Man and Testis), that we have sym
bols for property names (such as has-part), and that the
has-part-labelled arrow from Man to Testis means that
each instance of the class called Man is has-part-related to
at least one instance of the class called Testis.

Returning to human users, the semantics of a program
ming language tells us how a computer will interpret our

nables us to write software that does
o. Similarly, the semantics of a knowl
 language tells us how a computer, a
r human should understand the state-

software, and thus e
what we want it to d
edge representation
reasoner, or anothe
Page 3 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
ments in our knowledge base–and a precise semantics
tells us this in an unambiguous way.

The semantics might enable a human to interpret a state
ment as "each and every Man has at least one Testis", as
there is no other interpretation possible; he or she can also
bring their world knowledge to decide whether this is
true. A user might believe they understand what is repre
sented in the ontology shown in Figure 1, but dangerous
assumptions might be made when doing so and this is
where ambiguity can occur. If the knowledge representa
tion language has a precise semantics, then the knowledge
captured in the ontology expressed in that language can
be decoded with precision; that is, we can interpret exactly
what each statement in a language means. Precision is
vital for humans since it enables them to agree on the
meaning of a statement, and for the design of software to
take into account a knowledge base since it enables the
comparison of what the software actually does with what
it is supposed to do according to the semantics of the under
lying knowledge representation language. For example, a
precise semantics allows us to make statements about the
soundness and completeness of a query answering tool:
does it retrieve all and only those answers that should be
retrieved according to the semantics? This can mean, how
ever, that we need to make an effort to understand the
semantics [15].

3 OWL
OWL-DL [3] is an ontology language based on description
logics (DLs), which are a family of logic-based knowledge
representation formalisms describing "objects", "classes"
and the "relationships" between them [16]. Most DLs are
fragments of standard first order logic. Originally, they
were designed to give a unified logical basis to various
well-known traditions of knowledge representation like
frame-based systems and semantic networks [17]; they
have found various applications in conceptual modelling
and as a logical underpinning of ontology languages [16].
OWL-DL is based on an expressive DL, i. e., it provides a
wealth of constructors to describe complex class expres
sions from atomic classes and relationships. In this sec
tion, we will only use a small portion of OWL-DL's
expressiveness to highlight its core features.

The semantics of OWL-DL is best understood when talk
ing about "objects" that are "instances" of "classes", and
that are related to other objects via "relations".

An object can be an instance of a class, and a class can be
a sub-class of another class. For example, the object Rob
ert is an instance of the class Man which, in turn, is a sub
class of Person. The meaning of the sub-class relationship
is that all instances of the sub-class, Man, are also
instances of its super class(es), Person. In OWL-DL, to

describe a class, we can describe it in terms of other classes
(e.g., saying that Man are "Person and not Woman") and
of properties of its instances.

In Section 2, we have informally described an ontology
with classes Man, Woman, Person, and others. In this sec
tion, we will formalize some of these classes in OWL-DL.
We start by fixing the relationship between these three
classes. First, we declare that Man and Woman are "dis
joint"; that is, it is not possible for an object to be an
instance of both classes; this is expressed in the first state
ment of Figure 2. Similarly, we have to decide whether it
is possible for an instance of Person to be neither an
instance of Woman nor of Man. Assuming that this is not
the case, we add the second statement of Figure 2.
Together, these four statements imply that every person is
either a man or a woman, but not both.

Next, we make use of OWL-DL's ability to describe a class
by describing its superclasses and how its instances are
related to other objects. For example, the definition of the
class Man in Figure 2 states that an instance of Man is a
(instance of) Person which has an instance of Testis
related to it via the has-part property. As this statement
only says something about the existence of a relationship
to another object, it is called an "existential" restriction–
which is expressed in OWL-DL using the someValues-
From keyword. This asserts only that an instance of Man
might have several parts that are testis, and other parts, as
well–which is why we use the "amongst other things" in the
paraphrase. For example, we have left it open in our
description of Man whether a Man has ovaries, and so,
with respect to the above definition of Man, a Man may or
may not have ovaries. Additionally, to make this more
precise, OWL-DL also allows "universal" restrictions to be
made: e.g., in the definition of Woman, we say that an
instance of Woman is related via the relation has-part only
to instances of the complement of Testis, i.e., no part of a
woman can be an instance of Testis. This is expressed
using the allValuesFrom keyword and complementOf,
another expressive means which corresponds to logical
negation.

In the definitions of the classes Man and Woman, we have
used the keyword complete to indicate that the following
expressions provide necessary and sufficient conditions
for an object to be an instance of this class. That is, if we
know that Robert is a Man, we also know that he has a
part that is a testis and, if we find a person that has a part
which is a testis, then this person is an instance of Man.
This gives rise to the use of the "any" in the paraphrasing
used in Figure 2. Replacing complete with partial means
that only the first conclusion can be drawn. For example,
Figure 3 contains a partial definition of Eunuch as those
Persons that do not have Testis; so every Eunuch has no
Page 4 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
Man and Woman in OWLFigure 2
Man and Woman in OWL. Description and paraphrase provided.

parts which are Testis, but not everyone with no Testis is
a Eunuch.

In all of these examples, we have only stated restrictions
concerning Man and Woman and the objects to which
they are related by the has-part relation. We have not
restricted any other relationships we might choose to
describe, such as has-mother, nor have we said anything
about instances of Testis apart from the fact that they can
be parts of a Man. After all, other species' male instances
also have Testis, i.e., according to our ontology so far, an
instance of Testis can be part of other objects or of noth
ing at all.

In order to avoid such "homeless" testis, we can add a
restriction which states that an instance of Testis is a part
of a male animal. For this to have the desired effect, we
also need to state that has-part is indeed the inverse of the
relation part-of. Both statements are found in Figure 4.

Due to its description logic underpinning, OWL-DL
ontologies can be submitted to a DL reasoner which pro
vides reasoning services. Most importantly, a reasoner can
decide the consistency of each class defined in the ontol
ogy and it can compute the implicit class hierarchy. For
example, given the statements made so far, the reasoner
infers that a Eunuch is, in fact, a subclass of Woman. This
seems a little counter-intuitive, so we might also assert
that a Eunuch is a subclass of Man. The reasoner will then
tell us that Eunuch is inconsistent: there can be no
instances of it. In this case, it is probably our definition of
Man that is a poor model of reality. The inconsistency of
the Eunuch forces us to re-examine this model. The pre
cise and explicit nature of models in OWL-DL allows us to
check the knowledge we have captured as OWL-DL state
ments and have them to be interpreted correctly.

For a complete description of OWL-DL, we refer the reader
elsewhere [3]. Here, we have only used a small part of
OWL-DL's expressiveness. In addition to using a relation

in both directions (e.g., we have used the inverse direction
of has-part via part-of), OWL-DL also enables us to state
that a relation such as part-of is transitive (e.g., making a
SemiNiferousTubule part of a Testis also makes it part of
a Man) and to restrict the number of objects to which an
instance of a class is related by a specific relationship (e.g.,
restricting the number of gonads a Person has to 2). It
should be enough, however, to indicate that the well-
defined semantics of OWL-DL enables both the author
and a computer to "understand" precisely what has been
stated, and enable software such as a reasoner to deduce
implicit knowledge from such representations [18,19].

4 GO and DAG
The aim of this section is to elucidate the semantics of
GO's encoding and not to examine the correctness of the
biology captured in that encoding, which has been done
elsewhere [20]. There is need, however, to sometimes look
at the biology in order to understand the encoding. In
contrast to OWL, the semantics of the representation used
by the GO is not based on a logical formalism. Our under
standing of the GO DAG's semantics comes from its
description in English [21], from consultation with mem
bers of the Gene Ontology Consortium, and from infer
ences made from the ontology itself.

The GO is formalised as a Directed Acyclic Graph (DAG);
see Figure 5 for an example of a DAG. More precisely, a
"directed graph" is a structure with "nodes" and "edges",
the latter being ordered pairs of nodes. In our case, both
nodes and edges are "labelled": nodes with the term
denoting the class they stand for, and edges with the kind
of relationship that relates the corresponding classes. In
GO's DAG, edge labels are restricted to is-a and part-of.
Such a graph is acyclic, i.e., a DAG, if there is no path via
edges that relates a node with itself–regardless of the
edge's label, but using them only in a "forward" way. The
graph in Figure 5 is a DAG, for example. In GO, the term
labelling a node refers to this node and all of its children
[21].
Page 5 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
Eunuch in OWL

Testis in OWL

Figure 3
Eunuch in OWL. Description and paraphrase provided.

In addition to this structured knowledge, the GO DAG
contains additional information within nodes: a specific
GO identifier for each node, as well as "exact", "broad",
"narrow" and "related" synonyms for the term labelling a
node, and possibly a definition of the meaning of the
term. The latter are given in natural language, i.e., they are
free text descriptions that "define" what a term means. As
a consequence, they may come with all the ambiguities of
natural language, and we can sometimes not distinguish,
for example, between a necessary condition and one that
is necessary and sufficient. GO definitions are used by
annotators and GO curators alike when using GO, and are
not intended to be used by an automated reasoning tool
to draw new inferences. The format for the GO DAG also
allows for some provenance information, such as author,
source, etc. but this detail is beyond the scope of this arti
cle, where the emphasis is on the main ontological com
ponents of the representation.

Next, we discuss what kind of statements can be made in
GO's DAG representation. Firstly, GO uses two relation
ships, is-a and part-of. Figure 5 shows an example of a GO
DAG with both kinds of relationships. The is-a relation
ship points from a child (more specialised) to a parent
(more generalised) term [21]. We note that, if a parent has
more than one child, there is no way to distinguish
between possibly overlapping (e.g., Carnivores and Mam
mal) and disjoint (e.g., Man and Woman) classes [21].
When interpreting the GO documentation, care should be
taken because the part-of relationship, in GO's usage,
talks about parts and parents, not parts and wholes, as is
ontologically conventional [22]. In Figure 5, we can see
what some [13,23] have called "orphan" nodes, i.e., a
node that is part-of another node, but is not a kind of any
node. Conventionally, this would be a child with no par
ent, i.e., an orphan, and the GO curators are undertaking
an effort to remove such orphans since they indicate an

imprecise modeling (personal communication with Ame
lia Ireland from the Gene Ontology Consortium).

There are (at least) four readings of a part-of relationship
in GO's DAG [21]. Considering the part-of edge from a
node labelled P to a node labelled W, we have the follow
ing possibilities:

1. The part-of relationship makes no assumption of the
existence of the relationship between the nodes in either
direction. Any P may or may not be part of a W and any
W may or may not have a part that is a P. An example is
Person and Testis. Note that this need not contradict the
directed nature of the arcs. The part-of is directed, but
these semantics tell us how it is to be interpreted, particu
larly with respect to whether such a relationship exists or
not.

2. Wherever a P exists, it is as part of a W, e.g., Nucleus and
Cell.

3. Wherever a W exists, it has a part that is a P, e.g., Avian-
RedBloodCell and Nucleus.

4. Wherever a P exists, it is a part of a W and wherever a W
exists, it has a part that is a P. This reading is simply the
conjunction of readings 2 and 3. An example of this is
NuclearMembrane and Nucleus.

In the GO documentation [21] the "true path rule" states
that "the pathway from a child term all the way up to its
top-level parent(s) must always be true". This should be
true for both kinds of relationship in GO. For the is-a rela
tionship, this means that an individual labelled as Man
could also legitimately be labelled as Person or Animal.
So, a gene product labelled as a photoreceptor activity is
also a kind of signal transducer activity and finally, a

Figure 4
Testis in OWL. Description and paraphrase provided.
Page 6 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
A Gene Ontology Directed Acyclic Graph (DAG)Figure 5
A Gene Ontology Directed Acyclic Graph (DAG). The DAG has both is-a and part-of relationships.

molecular function. Thus, the "true path rule", when
working along is-a relationships implies that we read
these relationships in a monotonic way, i.e., every instance
of a class is also an instance of its superclasses, without
exceptions.

For the part-of relationship, this has several implications.
Firstly, it means that this relation is assumed to be transi
tive, e.g., if a gene is part of a nucleus which, in turn, is part
of a cell, then this gene is part of this cell. This assumption
is widely accepted [24]. Secondly, this means that we have
to choose one of the readings 2 or 4 mentioned above.
The GO editing style guide mentions that the majority of
part-of links in GO conform to reading 2; readings 1 and
3 are not used as they would violate the true path rule in
GO [21].

If we restrict our attention to reading 2, then it is not dif
ficult to verify that the true path rule is even correct when
we combine both kinds of relationship in one path: a path

using both is-a and part-of becomes indeed part-of. The
GO DAG editing style guide warns explicitly against
employing a reading different from the second one since
such an "abuse" might yield unwanted consequences via
the true path rule, and suggests that the best strategy is to
re-structure GO with new nodes and relationships so that
only reading 2 is employed and the true path rule can be
employed correctly. As a consequence, while we might
have stated that a Testis is part of Man, we cannot say any
thing about a Man having part Testis since this would
involve reading 3.

5 Reconciling the two representations
In this section we reconcile the semantics of OWL-DL and
GO's DAG: we analyse how one can be translated to the
other and where, in that process, there could be problems.
To perform such a translation it is necessary to understand
the semantics of source and target languages and the aim
is, of course, to say the same in each representation.
Page 7 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
We start by assessing a technical issue that does not affect
the semantics, but is important: naming conventions.
OWL-DL has got its own naming conventions: non alpha
numeric characters or white spaces are not allowed in the
names of the classes, only underscores and alpha-numeric
characters. This presents a problem since many GO term
names include non-alphanumeric characters. A solution
to this problem is to translate any non-alphanumeric
character into a string that spells out the disallowed: for
example (-)-borneol dehydrogenase activity in GO
would become
PAR_MINUS_PAR_MINUS_borneol_dehydrogenase_ac
tivity in OWL. There is a choice to be made as to whether
the term or GO identifier become the class label. The id is
the primary identifier (GO:0047503), but the term is the
more readable. Whatever the decision, one can be repre
sented using the class label and one using an assertion on
an "annotation property": in OWL-DL, we can declare a
property to be an annotation property, and then use such
a property to attach information to classes–without them
being taken into account by an OWL-DL reasoner. That is,
assertions on annotation properties act as comments from
a DL point of view, yet they can be displayed to the biolo
gist as a piece of information on this class–just as in GO.
The most suitable annotation property for labelling a term
with its id is rdfs:label, which is already included in OWL.

We cannot translate the natural language definitions asso
ciated with a term into OWL-DL axioms. These definitions
might be expressible in OWL, yet we cannot automatically
generate the correct OWL-DL expressions from a piece of
English text. We can, however, capture them using
another assertion on an annotation property.

We can capture the synonyms and other alternative labels
given for a term in a variety of ways:

1. As assertions on an annotation property;

2. Using equivalence, subclass and superclass axioms;

3. A mixture of approaches one and two.

In the first approach, we can use a series of annotation
properties such as exact synonym, broad synonym, nar
row synonym and related synonym.

In the second approach, if S1,...,Sn are the exact synonyms
given for a term T, then we translate this into an equiva
lence axiom EquivalentClasses(T S1...Sn). Thus, each
instance of Si is also an instance of T and each Sj and, vice
versa, each instance of T is also an instance of each Si.

In OWL-DL, an equivalence axiom Equivalent
Classes(T S) means that the classes T, S involved have

the same extent of instances. It can further be argued that
they are therefore the same class. If the synonyms are
exact, this is logically correct, though the ontologist might
be presented with a plethora of classes in the user inter
face. It can be argued, however, that for the user this is
simply a presentational issue, and that the user interface
should collapse equivalent classes. Some methodologies,
such as [25], suggest that a minimal number of classes
should be used in an ontology. Use of equivalent classes
does not break such an edict if we interpret classes with
the same extent of objects as the same class (which is, after
all, what is being said). It should be remembered, as is the
message all through this article, that the reader should be
wary of conflating presentation and the real semantics of
a statement. Just as assumptions can be made about the
presentation in Figure 1, so can assumptions be made
about syntax showing "multiple" classes in an OWL-DL
file.

A more significant argument is that this solution conflates
a class level argument with a lexical argument. It should
be remembered that labels on classes can change, while
the class itself is unaltered. One only has to think, for
instance, of the different French, German and English
words for Leg that all refer to the same class of instances.
Also, the equivalence axiom approach breaks when the
synonyms are not exact synonyms. It could then be argued
that the synonym labels should not be used, but one of
narrow, broad or related. Hence the equivalence axiom
solution is slightly sub-optimal since we would have pre
ferred to have only a single class and more than one name
for it, yet this would have required some expressiveness
not (yet) available in OWL-DL, and the second approach
has largely the same effect. In a similar manner to the
equivalence axiom, if we have an alternative name S that
is "broader than" a term T, then we add a statement Sub
classOf(T S), and if we have an alternative name S that
is "narrower than" a term T, then we add a statement
SubclassOf(S T).

Please note that the second approach does not take into
account related class labels which are not either exact, nar
row nor broad, like virulence and pathogenesis. In this
case, we can only suggest to use the first approach. In
approach two, we cannot completely translate all class
labels in an OWL-DL form, because the related-to tag has
no reasonable representation as either subclass axiom or
restriction upon a class, so we would have to use approach
three, with a mixture of logical axioms and one assertion
on an annotation property.

The use of the extra equivalence and subclass axioms has
a logical argument and can be useful. When a reasoner is
applied to such a translation, inconsistencies can be
found. If the translator, however, feels that this approach
Page 8 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
mixes lexical and logical issues then only approach 1,
using only assertions on annotation properties is the most
valid approach.

Next, the DAG is-a relationship translates directly into
OWL's sub-class relationship since they have the same
semantics, i.e., every instance of a class is also an instance
of each of its superclasses.

We can assume that subclasses in the DAG representation,
like OWL subclasses, overlap by default, i.e., if C1 and C2
are subclasses of the same superclass, then we cannot
exclude that there exists an object that is an instance of
both C1 and C2. This will capture most of the biology in
GO correctly. However, we might want to examine the GO
and check, for each pair of subclasses, whether we cannot
provide more information. For example, we should ask
ourselves whether it is possible for an individual molecu
lar function to be both function-x and function-y at the
same time. If this is not the case, then we should make this
knowledge explicit in the OWL ontology through the
axiom DisjointClasses(function-x function-y).

In a similar manual step, we should add covering con
straints where appropriate. A covering axiom means that,
if an object is a member of a class, then it must be a mem
ber of one of the classes that it is asserted to "cover". That
is, if Person covers Man and Woman, then any object that
is a Person must be either a member of Man or a member
of Woman, but it is possible not to have enough informa
tion to know to which of these classes that object belongs.
For a biological example, if Enzyme activity covers all the
enzyme functions, then an enzyme activity must be one of
those activities; a new enzyme activity would be inconsist
ent with the ontology. The GO DAG representation does
not allow such axioms and we believe that biologists
would not use them widely even if it were possible
because such axioms would require more knowledge than
is usually available. An assumption of no covering is,
therefore, not unreasonable.

Since the GO DAG does not capture disjointness or cover
ing constraints, its inclusion is a matter of capturing bio
logical knowledge, and there is no way of simply
automating knowledge of disjointness. An automatic
translation is possible if it is assumed that there is no "cov
ering" and all sibling classes can possibly overlap.

5.1 Capturing the GO DAG part-of in OWL
OWL-DL provides a language that allows us to use as
many properties as we want, and we can constrain their
interpretation in a number of ways using existential, uni
versal, or cardinality restrictions, and we can make state
ments about them such as one property being implied by
another one or that a property is transitive. In Section 4,

we have discussed four possible readings of the GO DAG's
part-of links, and we show here how these different inter
pretations can be captured via translations to OWL-DL
axioms. The advantage here is that, rather than using a sin
gle construct which may be read in a number of different
ways, OWL-DL allows us to distinguish between these dif
ferent readings. We can then use different readings of the
part-of relationship (e.g., those discussed in Section 4),
without any danger of confusion. In the following exam
ples, we consider how we capture the particular semantics
of the assertion P part-of W.

Reading 1 does not impose any restrictions on an
instance of P or W as they only deal with the potential for
the relationship. If one insists, one can translate this read
ing into an OWL-DL axiom

SubClassOf (P UnionOf ((restriction(part-of
someValuesFrom W))

ComplementOf (restriction(part-of someVal
uesFrom W))),

yet this statement does not impose any constraints:
indeed, it is equivalent to saying that P is a subclass of
OWL:thing or saying nothing. In contrast, impossibili
ties do impose constraints, and we can express them in
OWL-DL: to express that a P can never be part of a W, we
can add the OWL-DL axiom

SubClassOf (P ComplementOf (restriction(part
ofallValuesFromW)))

Reading 2 Whenever a P exists, it is part of a W. This can
be represented through the following axiom:

SubClassOf(P restriction(part-of someValues
From W)),

stating that, for each and every instance of P, there must be
an instance of W of which it is a part. For example, every
instance of SemiNiferousTubule is a part of an instance of
Testis.

Reading 3 Whenever a W exists, it has some P as a part.
This can be represented through the following axiom:

SubClassOf (W restriction(has-part someVal
uesFrom P)),

provided that we have declared that the property has-part
is the inverse of part-of, as in Figure 4 (many description
logics allow the definition and use of inverse relation
ships; in OWL there is no inverse property operator for use
in expressions, but we can introduce and define properties
Page 9 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
as inverses). Inverse properties are interpreted as one
would expect: two individuals a and b are related via a
property P if and only if b and a are related via the inverse
of P. For example, we can use such an axiom to state that
every instance of Testis has a part that is an instance of
SemiNiferousTubule. Please note that this statement and
the one given as an example for the third reading are inde
pendent in the sense that they do not imply each other.

Reading 4 This is simply a conjunction of 2 and 3, and we
can thus encode it by including both axioms introduced
above.

As mentioned before, GO employs reading 2 for part-of
links. Hence we translate each such link into the corre
sponding OWL statement. Additionally, we can then
manually add more statements, e.g., in cases where our
biology tells us that reading 4 would be more precise.
These various semantics for the part-of relationship used
in the GO DAG pre-date the OBO relationships described
below in Section 6. In the OBO relationships, as we shall
see, the semantics are more strictly defined and the trans
lation to an existential property on a class, as in interpre
tation above, is clear.

Recall that, in GO, orphan nodes are those that do not
have any outgoing is-a link. In OWL-DL, the correspond
ing classes do not cause any problems since they will be
automatically placed in the class hierarchy under the most
general class called OWL:thing. There are, therefore, no
orphan nodes in an OWL-DL ontology and any modelling
that makes any biological assertions to overcome placing
subclass axioms to OWL:thing must be part of a process
independent of the translation of representation.

That completes our discussion of the translation of GO's
DAG into OWL-DL. We can see, therefore, that it is possi
ble to represent what is captured in the GO in OWL-DL
with making only two assumptions, both of which are rea
sonable. The OWL-DL representation will capture the
same knowledge as the GO DAG. In addition, we can even
distinguish between the uses of readings two and four in
the part-of relationship in GO.

5.2 Translating OWL-DL back into DAG
As we have observed above, the DAG's is-a relationship
and the subclass relationship in an OWL-DL ontology
have the same reading. Hence we can take an OWL-DL
representation of a DAG ontology, ask a reasoner such as
FaCT++, Pellet or Racer [26-28] to infer all subclass rela
tionships, and then translate the resulting class hierarchy
back into DAG format. To be more precise, for each class
name A, we first ask the reasoner to return all classes that
are equivalent (if we have used the translation of syno
nyms using equivalence axioms described above) with A.

Then we choose a "main" node label A' from A and the
reasoner's answer, and create a node labelled A' whose
exact synonyms are set to A (in case that A' is different
from A) and the reasoner's answer (possibly minus A'). As
a result of this step, we obtain a set of nodes labelled with
terms and exact synonyms. Next, for each pair of node
labels A, B, we ask the reasoner whether A is a subclass of
B. If this is the case, we add an is-a link from A to B, oth
erwise we do not do anything. Similarly, for each pair of
node labels A, B, we ask the reasoner whether A is a sub
class of restriction(part-of someValuesFrom B). If
this is the case, we add a part-of link from A to B, other
wise we do not do anything. Narrow and broad synonyms
can be obtained by looking for subclasses and super
classes, respectively, yet this would be exactly the same
information as represented in the is-a structure and thus
redundant. Finally, those features of the GO DAG that we
have translated to assertions on annotation properties can
be retrieved and back-translated appropriately.

As a result, we obtain a graph whose nodes are labelled
with names and sets of synonyms, and whose edges are
labelled with is-a and part-of. If any axioms have been
added to the GO in OWL, such as disjointness or covering
axioms, these are retrieved through calls to the reasoner.
Disjointness can be represented in the OBO format (see
Section 6 below), but covering cannot. So, the back-trans
lation of an augmented GO in OWL might well be lossy;
i.e., they are lost in translation. This would also be true of
all those features of OWL-DL that cannot be expressed in
the OBO format. In general, this graph might not neces
sarily be acyclic, i.e., it may contain cycles. Since the GO
DAG only allows part-of and not has-part relationships,
however, common sense tells us that we should obtain an
acyclic graph: a cycle would need to involve a part-of link
since pure is-a cycles have been collapsed into a single
node by construction. Now a cycle involving a part-of
link, say from a node labelled A, would mean that, in
every world conforming to our ontology, we have an infi
nite chain of instances ai of A with a1 part-of a2 part-of a3
part-of..., which clearly clashes with our intuition. How
ever, if other relationships are used in the DAG, such as
has-location or interacts-with, a cycle could easily arise
(e.g. a protein that interacts with itself). As we will see
below (Section 6) the wider OBO language allows cycles.

6 Representing other OBO relationships in
OWL
Open biomedical Ontologies (OBO [5]) is a collection of
bio-ontologies, and they come with a core set of biologi
cal properties for use within OBO ontologies [29,30]. The
aim is to have consistent interpretation and use of proper
ties representing biological relationships. Here we
describe what aspects of the OBO relationships can be
represented in OWL. The OBO relationships talk about
Page 10 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
properties at three levels, and we can easily distinguish
these relationships in OWL:

1. Stating that an individual a is an instance of a class C:
this is expressed by

Individual(a type C)

2. Stating that an individual a is related via a certain prop
erty P with an individual b: this is expressed by

Individual(a P b)

3. Stating that each instance of a class C is related via a
property P to some instance of a class D.

SubClassOf(C restriction(P someValuesFrom
D))

In our experience, the third of the above relationships is
the most commonly used in building ontologies based on
classes, where the (all – some) form of definition used in
the OBO relationships fits perfectly with the DL style of
relationships [31]. The OBO relationships, so far at least,
are therefore readily mapped to a restriction with existen
tial quantification. The OBO relationships are of the third
kind, but built upon a series of primitive relationships
between instances such as part-of holding between two
continuants; located-in holding between a continuant
and a region; derives-from holding between two continu
ants; etc.

As mentioned, these basic OBO relationships can be
expressed in OWL. In OBO, they are extended, however,
to take into account both temporal and spatial aspects,
none of which can be expressed in OWL: for example,
OWL allows us to state that every instance of C must be
located-in an instance of D, yet we can not express that an
instance of C' must eventually be located-in an instance of
D or that an instance of E will eventually be an instance of
a class F. For example, we might want to express that Adult
is –a–cont child because an instance of the class Adult
has at some previous time point been a Child. Since OWL-DL
takes an entirely static view of the world, such a statement
cannot be made in OWL. There are extensions of (the DL
underlying) OWL-DL that can deal with these temporal
aspects [32], but the reasoners used for OWL-DL do not
handle these logics nor does the OWL-DL syntax or
semantics accommodate these temporal aspects.

The OBO file format includes several aspects that should
be translated into OWL; some of them are required
aspects, others are optional, see Table 1. Some of these
aspects have already been analysed in this paper for the
GO's DAG: the synonyms (related_synonym,

exact_synonym, broad_synonym and
narrow_synonym), is_a (sub-class relationship in OWL),
relationship (existential restrictions in OWL, as already
described in the case of part-of) and is_transitive (transi
tive properties in OWL). For the rest, the translation is
provided in Table 1. It is intended that the OBO language
has the same semantics as OWL (personal communica
tion with Chris Mungall from the Gene Ontology Consor
tium) and this is the approach we have adopted, though
the documentation was at times unclear.

In Table 1, many of the OBO entries are described as being
"extra-logical" in OWL-DL. This means that they are not
part of the descriptions of the objects in a class. For
instance, a GO id is a description of the class, not a
description of the instances or objects of that class. OWL
DL can currently only represent these extra-logical aspects
with the annotation properties mentioned earlier in Sec
tion 5.

The OBO optional tag is_cyclic is intended to convey that
a relationship can be used to form cycles (such as, inter
acts-with forming cycles of interacting proteins). Proper
ties in OWL-DL are inherently free to do this and so
is_cyclic could only be preserved as another annotation
property.

The OBO file format allows for property hierarchies (for
example in the Sequence Ontology [33]), but the DAG
does not use them. For the wider OBO representation, it
is perfectly possible to translate property hierarchies.

7 Implementation
This translation has been implemented as a Java (1.5) pro
gramme [34]. It takes a GO ontology expressed in the
OBO 1.0 format [8] and produces the same ontology
expressed in OWL DL in the RDF/XML syntax [35].

The OBO flat file is read and the WonderWeb OWL API
[36] is used to create the OWL-DL ontology. The OBO flat
file is parsed and loaded into memory as an intermediate
representation that is later explored by the programme
and each OBO element is used, as appropriate, to supply
parameters to operations on the WonderWeb API. For
example, two class identifiers are supplied to the subclass
operation to create an OWL subclass axiom; the id of the
OBO term is supplied as a value for rdfs:label property;
the second half of the OBO part-of relationship is sup
plied as a filler for an existential restriction on the part-of
object property; and so forth. Finally a new OWL file in
RDF/XML syntax is created on the hard disk.

The translation uses the approach 2 to deal with syno
nyms: exact synonyms, narrow synonyms and broad syn-
Page 11 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57

Table 1: Translation of OBO aspects into OWL.

OBO stanza OWL Required/Optional

name OWL-DL class name required
id Extra-logical required
alt_id Extra-logical optional
namespace OWL namespace optional
definition Extra-logical optional
comment Extra-logical optional
subset Extra-logical optional
related_synonym "Some values from" restriction on optional

related_synonym
exact_synonym Equivalent class optional
broad_synonym Superclass optional
narrow_synonym Subclass optional
xref_analog Extra-logical optional
xref_unknown Extra-logical optional
is_a Subclass optional
relationship "Some values from" restriction on object optional

property
is_obsolete Extra-logical optional
use_term Object property optional
domain domain optional
range range optional
is_cyclic (see Section 6) optional
is_transitive transitive optional
is_symmetric symmetric optional

onyms are translated as new equivalent classes, subclasses
and superclasses, respectively.

8 Discussion
In this paper we have attempted to convey why computer
scientists seem to care so much about a representation
language's semantics. In essence, it is in order to prevent
ambiguity of interpretation (at a far simpler level than
intention) of statements in the language. We only have to
think back to our toy informal ontology for Man and
Woman to see the trouble that imprecision can give. One
only has to substitute genes, proteins, processes, etc. into
these types of informal statement to realise the wide vari
ety of interpretations that can be placed on ill-defined
statements. "P53 activates transcription"–is all transcrip
tion activated by P53? do all P53 activate transcription? In
this sense formality is very useful. OWL is, of course, not
the only formal language. Our point here is, however, to
exemplify the benefits of such formality in communicat
ing to humans and computers.

By examining the semantics of OWL-DL and GO's DAG,
we have seen that converting from GO DAG to OWL-DL
presents no real problem, as long as we are willing to
make assumptions on disjointness and covering. We can
even translate our OWL-DL ontology back into DAG.
There are various benefits of having an OWL-DL version
of a DAG ontology. Firstly, we can say things in OWL-DL
that we cannot say in DAG, and we can thus make prop

erties and relations explicit. For example, we can express
covering between classes, we can use properties in both
directions, and we can formulate necessary and sufficient
definitions of classes. Secondly, these statements are ame
nable to machine interpretation: that is, we can have an
OWL-DL reasoner classify our ontology and detect incon
sistent classes. This can help us find modeling errors in
our ontology, e.g., when the reasoner comes back with un
intended inferred is-a links or inconsistent classes, and
thus supports the design of a good ontology. Thirdly, we
can annotate documents with complex OWL-DL class
descriptions and have the reasoner take these into account
when answering queries. That is, we are no longer
restricted to the classes present in the ontology, but we can
make them up on-the-fly and have these descriptions
taken into account for query answering. In DL style ontol
ogies, it is common for classes defined in an ontology to
be the building blocks of other classes, rather than enu
merating all the possible classes. Obviously, converting an
ontology that comes with such expressiveness and infer
ence services to one that lacks them might lead to an
impoverished ontology. Fourthly, we can extend our
translations in a straightforward way to other OBO rela
tions.

In summary, we have described the role of a language's
semantics. We have also described the role and benefits of
a representation language with well-defined semantics
and reasoning support. The core of the argument is that, if
Page 12 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/57

BMC Bioinformatics 2007, 8:57 http://www.biomedcentral.com/1471-2105/8/57
ontologies are to fulfill their role of providing a common,
shared understanding of a knowledge domain, then the
statements within that ontology have to be able to be
interpreted unambiguously. We then examined the
semantics of GO's DAG and compared it with OWL-DL.
Our results of examining the expressive means provided
by both formalisms and their semantics is that conver
sions between the OBO representation and the GO DAG
subset is possible (within some constraints) and leads to
interesting new possibilities.

9 Authors' contributions
All authors contributed both writing and thought to this
paper. MEA led this effort. RS, SB, PL and US produced an
early draft and MEA brought it to conclusion, including
the implementation. US and SB provided expertise on
OWL and description logics. All authors read and
approved the final manuscript.

Additional material

Additional File 1
"Glossary". list of computer science terms used in this article, with their
definitions.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471
2105-8-57-S1.pdf]

10 Acknowledgements
MEA is funded by Manchester University and EPSRC. The authors would
like to thank Chris Mungall and Amelia Ireland for their help with GO, the
GO DAG and the OBO file format.

References
1.	 Gene Ontology Consortium: Gene Ontology: Tool for the Uni

fication of Biology. Nature Genetics 2000, 25:25-29.
2.	 OWL Web Ontology Language Guide [http://www.w3.org/TR/

owl-guide]
3.	 Horrocks I, Patel-Schneider PF, van Harmelen F: From SHIQ and

RDF to OWL: The Making of a Web Ontology Language.
Journal of Web Semantics 2003, 1:7-26.

4.	 Gene Ontology Consortium: Creating the Gene Ontology
resource: Design and Implementation. Genome Research 2001,
11:1425-1433.

5.	 Open Biomedical Ontology [http://obo.sourceforge.net]
6.	 Bada M, Stevens R, Goble C, Gil Y, Ashburner M, Blake JA, Cherry JM,

Harris M, Lewis S: A Short Study on the Success of the Gene
Ontology. Journal of Web Semantics 2004, 1:.

7.	 GO downloads [http://geneontology.org/GO.downloads.shtml]
8.	 File format guide [http://www.geneontology.org/GO.for

mat.shtml]
9.	 DAG-Edit user guide [http://www.godatabase.org/dev/java/dage

dit/docs/index.html]
10.	 OBO-Edit user's guide [http://www.godatabase.org/dev/java/

oboedit/docs/index.html]
11.	 Aitken S, Korf R, Webber B, Bard J: COBrA: a bio-ontology edi

tor. Bioinformatics 2005, 21(6):825-826.
12.	 Gene Ontology Next Generation [http://www.gong.manches

ter.ac.uk/]
13.	 Wroe C, Stevens R, Goble C, Ashburner M: A Methodology to

Migrate the Gene Ontology to a Description Logic Environ

ment Using DAML+OIL. 8th Pacific Symposium on biocomputing
(PSB) 2003:624-636.

14.	 MAPPING OBO TO OWL [http://www.godatabase.org/dev/
doc/mapping-obo-to-owl.html]

15.	 Goodwin J: Experiences of using OWL at the Ordenance Sur
vey. Proc of OWL Experiences and Directions 2005.

16.	 Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P,
(Eds): The Description Logic Handbook Theory, Implementation and Appli
cations Cambridge University Press; 2003.

17.	 Duce D, Ringland G: Background and Introduction. In
Approaches to Knowledge Representation: An Introduction Edited by: Rin
gland GA, Duce DA. New York: Wiley; 1988:1-12.

18.	 Stevens R, Goble C, Horrocks I, Bechhofer S: Building a Bioinfor
matics Ontology Using OIL. IEEE Transactions on Information Tech
nology and Biomedicine 2002, 6(2):135-41.

19.	 Stevens R, Goble C, Horrocks I, Bechhofer S: OILing the Way to
Machine Understandable Bioinformatics Resources. IEEE
Transactions on Information Technology and Biomedicine 2002, 6:129-34.

20.	 Smith B, Williams J, Schulze-Kremer S: The Ontology of the Gene
Ontology. Annual symposium of American Medical Informatics Associa
tion (AMIA) 2003.

21.	 The GO Editorial Style Guide [http://www.geneontology.org/
GO.usage.shtml]

22.	 Winston M, Chaffin R, Herrmann D: A Taxonomy of Part-Whole
Relations. Cognitive Science 1987, 11:417-444.

23.	 Yeh I, Karp PD, Fridman Noy N, Altman RB: Knowledge acquisi
tion, consistency checking and concurrency control for Gene
Ontology (GO). Bioinformatics 2003, 19(2):241-248.

24.	 Simons PM: Parts. A study in Ontology Oxford: Clarendon; 1987.
25.	 Gomez-Perez A, Juristo N: METHONTOLOGY: From Ontolog

ical Art Towards Ontological Engineering. Engineering Work
shop on Ontological Engineering (AAAI97) 1997.

26.	 Tsarkov D, Horrocks I: Optimised Classification for Taxonomic
Knowledge Bases. Proc of the 2005 Description Logic Workshop (DL
2005) 2005.

27. 	 Sirin E, Parsia B, Cuenca Grau B, Kalyanpur A, Katz Y: Pellet: A
Practical OWL-DL Reasoner. [http://www.mindswap.org/
papers/PelletJWS.pdf]. [Submitted for publication to the Journal of
Web Semantics].

28.	 Haarslev V, Möller R: RACER System Description. IJCAR-01, Vol
ume 2083 of LNAI, SV 2001.

29.	 Smith B, Ceusters W, Klagges B, Kohler J, Kumar A, Lomax J, Mungall
C, Neuhaus F, Rector A, Rosse C: Relations in biomedical ontol
ogies. Genome Biology 2005, 6(5):R46.

30.	 OBO relation ontology [http://obofoundry.org/ro/]
31.	 Levesque H, Brachman R: A fundamental tradeoff in knowledge represen

tation and reasoning Morgan Kaufman. Readings in Knowledge Repre
sentation; 1985:41-70.

32.	 Wolter F, Zakharyaschev M: Temporalising Description Logics.
In Frontiers of Combining Systems Volume 2. Edited by: Gabbay D, de
Rijke M. Studis Press/Wiley; 2000.

33.	 Eilbeck K, Lewis S, Mungall C, Yandell M, Stein L, Durbin R, Ashburner
M: The Sequence Ontology: a tool for the unification of
genome annotations. Genome Biology 2005, 6(5):R44.

34.	 GO to OWL converter [http://www.gong.manchester.ac.uk/
downloads/]

35.	 OWL Web Ontology Language Reference [http://
www.w3.org/TR/owl-ref/]

36.	 OWL API [http://sourceforge.net/projects/owlapi]
Page 13 of 13
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-8-57-S1.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.w3.org/TR/owl-guide
http://www.w3.org/TR/owl-guide
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11483584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11483584
http://obo.sourceforge.net
http://geneontology.org/GO.downloads.shtml
http://www.geneontology.org/GO.format.shtml
http://www.geneontology.org/GO.format.shtml
http://www.godatabase.org/dev/java/dagedit/docs/index.html
http://www.godatabase.org/dev/java/dagedit/docs/index.html
http://www.godatabase.org/dev/java/oboedit/docs/index.html
http://www.godatabase.org/dev/java/oboedit/docs/index.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15513995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15513995
http://www.gong.manchester.ac.uk/
http://www.gong.manchester.ac.uk/
http://www.godatabase.org/dev/doc/mapping-obo-to-owl.html
http://www.godatabase.org/dev/doc/mapping-obo-to-owl.html
http://www.geneontology.org/GO.usage.shtml
http://www.geneontology.org/GO.usage.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538245
http://www.mindswap.org/papers/PelletJWS.pdf
http://www.mindswap.org/papers/PelletJWS.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892874
http://obofoundry.org/ro/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892872
http://www.gong.manchester.ac.uk/downloads/
http://www.gong.manchester.ac.uk/downloads/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://sourceforge.net/projects/owlapi
http://www.biomedcentral.com/1471-2105/8/57

	Abstract
	The bio-ontology community falls into two camps: first we have biology domain experts, who actually hold the knowledge we wish to capture in ontologies; second, we have ontology specialists, who hold knowledge about techniques and best practi...

	1 Background
	2 Why do computer scientists care so much about semantics?
	3 OWL
	4 GO and DAG
	5 Reconciling the two representations
	5.1 Capturing the GO DAG part-of in OWL
	5.2 Translating OWL-DL back into DAG

	6 Representing other OBO relationships in OWL
	7 Implementation
	8 Discussion
	9 Authors' contributions
	Additional material
	10 Acknowledgements
	References

