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READING ASSIGNMENT: 
Malvern, Chapter 6, pp. 278-282 
Ward, Chapters 1 & 2 
Papers on Extracellular Matrix Macromolecules 
Section 3.5 on Connective Tissue in ALG text. 

PROBLEMS:

Do problems 1-3 attached.
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Problem 1 

A small cubic tissue specimen of dimension h = 1cm is tested to determine its elastic 
properties. If we assume that the material can be modeled as linear, isotropic and 
homogeneous, answer each of the following: 

a) The sample is placed between two rigid surfaces and compressed by 5% of its initial 
height (Fig. 1a). If the material were incompressible and has a Young’s modulus of 106 

Pa, how much force would need to be applied? 

b) Next, a shearing force is applied as in Fig. 1b. What is the shear modulus of the 
specimen, based on your measurements in (a) and the stated assumptions? How great a 
shear force would need to be applied to displace the top surface a distance of 0.1h? 

c) If, in the process of conducting the experiment in (a), it is observed that the lateral 
dimensions of the specimen increase from h to 1.02h, what is the final volume of the 
specimen? Is the specimen incompressible? What is the Poisson ratio? 
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Fig. 1a Fig. 1b 

(c) Find an expression for the Young’s modulus E in terms of the shear modulus G and 
Poisson’s ratio n by applying both forms of Hooke’s law to the shear configuration 
shown in Fig. 1b. 



Problem 2 

An artery is subjected to an internal pressure of 100 mmHg (760 mmHg = 105 Pa). 
Assuming the wall is isotropic and linearly elastic and has a Poisson ratio of 0.45, an 
elastic modulus (E) of 105 Pa, initial radius (R) of 1 cm, and wall thickness (h) of 0.1 cm, 
answer the following: 

a) What is the average circumferential stress in the wall? Making the thin-wall 
approximation so that the circumferential stress can be assumed uniform, what is the 
radial dependence of the radial compressive stress? 

Now consider a small cubic element located at a position halfway through the wall where 
we consider the circumferential (“1”), radial (“2”), and axial (“3”) coordinates as shown 
in the sketch and revert to planar coordinates (for algebraic simplicity). The radial and 
compressive stresses are assumed known from (a). 
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b) Taking the artery to be axially-constrained so that e33 = 0, find s33, e22, and e11 at a 
location halfway through the wall (r = R+h/2). 

c) What is the change in volume of the small element shown in the figure? What is the 
bulk compressive modulus? Recognizing that the tissue is comprised primarily of water 
and other essentially incompressible constituents, describe how such a volume change 
might take place. 

d) What condition must be satisfied between the three strains (e11, e22, e33) for an 
incompressible material (n = 0.5)? Show that this leads to a bulk modulus (K = l+2G/3) 
that is infinite. If the cube of material depicted in the figure above is initially h on each 
side, and is 1.1h x 0.8h x 0.8h following deformation, what is n? Does this make 
physical sense? How might this be possible given that the material is a biological, 
hydrated specimen? 



Problem 3 

The biomechanical properties of a tissue matrix are determined by the tissue’s randomly 
oriented collagen network enmeshed in a gel of negatively charged proteoglycans. For 
the experiments described below, this tissue is well described in equilibrium by a linear, 
homogenouos, isotropic (“Hookean”) constitutive law for the porous network. 

a) This tissue section is held between two glass slides to view the matrix and cells during 
deformation (Fig. 1). the specimen is subjected to an applied stress t11, which produces a 
small compressive strain e11 in the x1-direction. The rigid, fluid impermeable glass slides 
prevent any elongation in the x2-direction, but there are no constraints in the x3-direction 
(i.e., unconfined in the x3-direction). 
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Use the conditions in the x2 and x3 directions in the equilibrium compressed state to find 
an expression for the apparent equilibrium modulus Ea in the x1-direction (defined by 
Ea=t11/e11) in terms of the tissue’s equilibrium Young’s modulus E and the Poisson 
ration n. 

b) The charge-titration behavior of the tissue is graphed in Fig. 2. (The net charge is due 
to ionization of sulfate, carboxyl, and amino acid groups on the various matrix 
macromolecules, which varies with pH). 
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Fig. 2 

The known magnitude of the modulus Ea in equilibrium at physiological pH ~ 7 is 
known. On a graph similar to that in Fig. 2, sketch the relative variation of Ea with pH in 
the range of pH = 2-12. The important result here is the relative variation with pH, not 
the exact magnitude at any specific pH. 




