
   
 

 
 

 
    

  

   
     

  
 

       
    

  
    

     
   

    
    

    
  

20.320 Problem Set 3 Solutions 
September 25, 2009 

#
 

General Instructions: 

1. 	 You are expected to state all your assumptions and provide step-by-step solutions to the 
numerical problems. Unless indicated otherwise, the computational problems may be 
solved using Python/MATLAB or hand-solved showing all calculations. Both the results 
of any calculations and the corresponding code must be printed and attached to the 
solutions. For ease of grading (and in order to receive partial credit), your code 
must be well organized and thoroughly commented, with meaningful variable 
names. 

2. 	 You will need to submit the solutions to each problem to a separate mail box, so please 
prepare your answers appropriately.  Staples the pages for each question separately 
and make sure your name appears on each set of pages.  (The problems will get sent to 
different graders, which should allow us to get the graded problem set back to you more 
quickly.) 

3. 	 Submit your completed problem set to the marked box mounted on the wall of the fourth 
floor hallway between buildings 8 and 16. 

4. 	 The problem sets are due at noon on Friday, October 2nd. There will be no extensions of 
deadlines for any problem sets in 20.320. Late submissions will not be accepted. 

5. 	 Please review the information about acceptable forms of collaboration, which was 
provided on the first day of class and follow the guidelines carefully. 
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20.320 Problem Set 3 
Question 3 

#
 
In class we discussed the role of GCSF in binding both bone marrow precursors and 
neutrophils. The interaction of interest is between the GCSF and the GCSF receptor (GR).  
Given this table from Layton et al. JBC 274:25 pp.17445-17451 answer the following questions. 

This question will focus mainly on GCSF variants with wild-type GCSF receptor. 

a) 	 Draw out the four thermodynamic cycles for different GCSF mutants binding to the wild-
type GR.  Be sure to label the ligand and receptors along with each ∆G correctly. 

+GR	 +GRGCSFWT GCSFWT–GR GCSFWT GCSFWT–GR ∆Gbind, WT ∆Gbind, WT 

∆GWT/E19A, bound ∆GWT/K23A, bound 

∆GWT/E19A, unbound ∆GWT/K23A, unbound 

–GR	 –GRGCSFE19A GCSFE19A–GR GCSFK23A GCSFK23A–GR∆Gunbind, E19A 	 ∆Gunbind, K23A 

+GR 	 +GRGCSFWT GCSFWT–GR GCSFWT GCSFWT–GR 
∆Gbind, WT ∆Gbind, WT 

∆GWT/E46A, bound ∆GWT/D112A, bound 

∆GWT/E46A, unbound ∆GWT/D112A, unbound 

–GR 	 –GRGCSFE46A GCSFE46A–GR GCSFD112A GCSFD112A–GR∆Gunbind, E46A 	 ∆Gunbind, D112A 
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20.320 Problem Set 3 
Question 3 

#
 
b) 	 Given 100 pM concentration of WT-GR, calculate the fractional site saturation assuming 

an excess of ligand for wild-type GCSF and each GCSF mutant. 

Given a system where ligand concentration is in excess, we can ignore ligand depletion and use 
the formula discussed in lecture. For wild-type GCSF: 

[ ]  0.1 nM L0= =	 = 0.69 yWT [ ]+ KdL0 0.1 nM + 0.045 nM 

For the other GCSF mutants, the only parameter that changes is the Kd for GCSF-GR binding. 
We can repeat this calculation for each GCSF mutant and obtain the following fractional 
saturation values. 

= 0.67yE19A 
= 0.56 yK23A 
= 0.57yE46A 
= 0.63yD112A 

c) Compute the ∆∆Gs between all mutants (6 total ∆∆Gs) at normal body conditions (37°C 
and 1atm pressure). 

∆∆G represents the difference in binding energies when comparing two different mutants of a 
ligand or a receptor. To compute a ∆∆G, we simply compute each individual ∆G and subtract 
them. Recall that ΔG = RT lnKd . 

To calculate the ∆∆G comparing the free energies of binding GR to the E19A and K23A mutants 
of GCSF: 

ΔΔG° K23A– E19A = ΔG° GR−K23A − ΔG° GR−E19A 

= - 0.00199 kcal 
mol−K ) ln 0.077 ×10−9 M)− ln 0.050 ×10−9 M)])(310 K [ ( (
 

= -0.266 kcal 
mol
 

( 

Similarly, for comparing other pairs of mutant GCSF: 

ΔΔG° E46A– E19A = -0.258 kcal 
mol
 

ΔΔG° D112A– E19A = -0.112 kcal 
mol
 

ΔΔG° E46A– K23A = 0.00806 kcal 
mol
 

ΔΔG° D112A– K23A = 0.154 kcal 
mol
 

ΔΔG° D112A– E46A = 0.146 kcal 
mol 

d) Suppose we wanted to look at WT and E46A GCSF variants with WT-GR and R288A
GR. Draw out the double-mutant cycle. Be sure to label the ligand and receptors along 
with the ∆Gs/ ∆∆Gs correctly. (note: you can draw it as a cube, or simplify it, but it must 
contain all of the components) 

TIFFANY 
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20.320 Problem Set 3 
Question 3 

#
 
In lecture, we discussed the use of graphs for representing biomolecular interactions.  In a 
protein-protein interaction graph the ‘nodes’ represent proteins.  Two nodes are connected by 
an edge if there is evidence that the two proteins interact.  Consider the protein-protein 
interaction (PPI) network graph shown below. Protein nodes are colored blue and denoted by a 
one-letter character.  Each edge is associated with a probability of interaction as shown. 

To answer the questions below, you will need the NetworkX Python package, which is installed 
on Athena. If you wish to try this on your personal computer, the NetworkX zip file can be 
downloaded from http://pypi.python.org/pypi/networkx/. The folder networkx contained in the zip 
file will need to be placed in the same folder as the starter code provided. 

a) 	 As you can observe from the PPI network graph provided, there may be multiple ‘paths’ 
to reach any node from any other node of the network. Assume that each path 
represents a potential signal transduction pathway. The “length” of a path between two 
nodes is defined as the sum of the edge weights along that path. If the edge weights are 
set to the negative log of the probabilities ( wij = − log10 pij ) show that the shortest path 
will be the one with the maximum joint probability. 

The distance along a path (i.e. the path length) is defined as the sum of edge weights along that 
path. From the problem statement, we know that an edge weight is defined as the negative log 
of the probability of moving from one node to another. In other words:  

⎡ ⎤ 
Path length = ∑−log10 (Pij ), and by the rules of logs: Path length = −log10⎢ ( )⎥∏	 Pij

edge ij ∈  path	 ⎣⎢edge ij ∈ path ⎦⎥ 
⎛ ⎞ 

Since −log n = log ⎟ , a higher joint probability will result in a smaller path length. ( ) ⎜ 
1 

⎝ n ⎠ 

b) 	 Write a small piece of python code to accept the given graph as input and calculate the 
shortest path matrix (SPM) as output.  The SPM is a matrix-representation format that is 
convenient to analyze PPI networks. Each element of the SPM represents the joint 
probability of the set of protein-protein interactions along the shortest path between two 
nodes as in the following equation: 

4

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.
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20.320 Problem Set 3 
Question 3 

#
 

( ) ek∈P 
SPM i, j = maxP ∈ paths from i to j (Π probk ) 

where the product is over all edges k in P, a path from i to j and probk is the probability of 
edge k. You may assume that proteins of this network do not self-interact – that is no 
protein has any interaction with itself (0 probability). The website contains some code to 
help you get started with this problem called networkstarter.py You will have to 
submit your fully commented python code to receive credit for this problem. 

(Hint: The NetworkX module contains a function for computing the shortest distance between 
two nodes. Run networkx.dijkstra_path_length(graph,start,stop) to compute 
the sum of the edge weights along the shortest path between nodes start and stop. 
Remember to use weights equal to − log10 pij as defined in part (a). 

## Solution file for Question 2 of Problem Set 3 
## September 20, 2009 
## 20.320 

from networkx import *
from math import * 

##Create the graph bionet shown in problem 2 with each number 
##representing the -log10(probability of interactions) 

bionet=Graph()
bionet.add_nodes_from(["A","B","C","D","E","F","G","H","J"]) 
bionet.add_edge("A","D",weight=(-log10(0.09)))
bionet.add_edge("A","F",weight=(-log10(0.42)))
bionet.add_edge("A","H",weight=(-log10(0.12)))
bionet.add_edge("B","H",weight=(-log10(0.21)))
bionet.add_edge("B","F",weight=(-log10(0.17)))
bionet.add_edge("B","D",weight=(-log10(0.52)))
bionet.add_edge("B","G",weight=(-log10(0.13)))
bionet.add_edge("C","D",weight=(-log10(0.07)))
bionet.add_edge("C","E",weight=(-log10(0.05)))
bionet.add_edge("D","G",weight=(-log10(0.74)))
bionet.add_edge("D","H",weight=(-log10(0.18)))
bionet.add_edge("E","J",weight=(-log10(0.06)))
bionet.add_edge("E","G",weight=(-log10(0.08)))
bionet.add_edge("F","H",weight=(-log10(0.10)))
bionet.add_edge("G","J",weight=(-log10(0.04))) 

##You must now use the above graph to generate the SPM for all protein
##interactions. Your code must be commented and contain meaningful variable 
##names for it to be graded 

SPM = []  ##Initializes SPM matrix 

##Goes through each protein and calculate the distance to all other proteins 
for row in bionet:

  row_temp = [] ## Initializes list that will serve as a row in the SPM 
  row_temp.append(" "+row+" ") ##Adds title as first entry in each row 
  for column in bionet: 

5
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20.320 Problem Set 3 
Question 3 

#

  SP=dijkstra_path_length(bionet,row,column) ##Determine shortest path 
  prob=str(round(10**(-1*SP),2))##Converts shortest path to probability 
  if prob=="1.0":  ##Sets probability of self interactions to 0 

  prob="0  "
  if len(prob)==3: ##Makes all cells in final table the same width 

  prob=prob+" " 
  row_temp.append(prob) ##Adds probability value to current row in  

  table 
  SPM.append(row_temp) ##Adds row to final matrix 

##Prints a title for each column of the matrix
 
column_headers=[" "]

for row in bionet:


  column_headers.append("  "+row+" ") 
print column_headers 

##Print each row of the SPM 
for row in range(len(SPM)): 

  print SPM[row] 

c) 	 Given that there are indeed multiple paths between most pairs of nodes, do you suppose 
that the SPM is the best indicator of protein-protein interactions in biological networks? 
Why or why not? 

Recall from Part A that the shortest path between two nodes in a network is one of maximum 
joint probability. Calculating joint probability involves a series of “AND” statements (i.e. to go 
from A to B to C: A interacting with B AND B interacting with C) where individual probabilities 
are multiplied together. This leaves the joint probability calculation quite sensitive to 
experimental variation. Not only are biological networks difficult to probe experimentally, they 
are also dynamic, meaning that measurements collected reflect the state of the network under a 
specific set of conditions. This means that the SPM for a particular network is very sensitive to 
variations in the data and the experimental conditions used. 

d) 	 Another approach to analysis of PPI networks is to consider the multiple interaction 
paths between proteins of the network. Consider nodes A and G of the PPI network 
shown above and answer the following questions: 

i. 	 List all the different paths (along with the corresponding probabilities of 
interaction) between nodes A and G, assuming that no path can be more than 6 
nodes long, i.e. if the path includes more than 6 nodes you do not need to 
account for that particular path. You may represent the paths between nodes as 
a chain of letters the order of which gives the order of progression through the 
nodes (i.e. ACG means A to C to G). Further assume that no path can include 
any node more than once, i.e. that is paths such as ABFCADG are unacceptable 
since A occurs more than once. 
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20.320 Problem Set 3 
Question 3 

#
 

Path Joint Probability 
ADG 0.0666 
ADHFBG 0.000035802 
ADHBG 0.00044226 
ADBG 0.006084 
ADCEG 0.0000252 
ADCEJG 0.000000756 
AFBG 0.009282 
AFBDG 0.02747472 
AFHBG 0.0011466 
AFHDG 0.0055944 
AFBHDG 0.001997201 
AFHDBG 0.000511056 
AFHBDG 0.003393936 
AHBG 0.003276 
AHBDG 0.00969696 
AHDG 0.015984 
AHDBG 0.00146016 
AHDCEG 0.000006048 
AHFBG 0.0002652 
AHFBDG 0.000784992 

ii. 	 Write an equation for the effective probability that at least one active protein-
protein interaction path exists between two nodes in the network in terms of the 
probability of the edges. Note that prob(at least one active path exists) = 1 - 
prob(none of the paths are active). You may assume that each path is 
independent of other paths in the network. 

Prob(at least one active path exists) = 1-prob(none of the paths are active) 
Prob(path n is inactive) = 1 – prob(path n is active) 
Prob(none of the paths are active) = Prob(path n is inactive) * Prob(path m is inactive) * 
… 
Therefore Prob(none of the paths are active) = [1 – prob(n)]*[1 – prob(m)]*… 
Therefore Prob(at least one active path exists) = 

1 – ([1 – prob(n)]*[1 – prob(m)]*…) 
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20.320 Problem Set 3 
Question 3 

#
 
iii. 	 Apply the equation you derived above to calculate the probability that at least one 

active path exists between nodes A and G of our network. 

Path Joint Probability 1-[Joint Probability] 
ADG 0.0666 0.9334 
ADHFBG 0.000035802 0.999964198 
ADHBG 0.00044226 0.99955774 
ADBG 0.006084 0.993916 
ADCEG 0.0000252 0.9999748 
ADCEJG 0.000000756 0.999999244 
AFBG 0.009282 0.990718 
AFBDG 0.02747472 0.97252528 
AFHBG 0.0011466 0.9988534 
AFHDG 0.0055944 0.9944056 
AFBHDG 0.001997201 0.998002799 
AFHDBG 0.000511056 0.999488944 
AFHBDG 0.003393936 0.996606064 
AHBG 0.003276 0.996724 
AHBDG 0.00969696 0.99030304 
AHDG 0.015984 0.984016 
AHDBG 0.00146016 0.99853984 
AHDCEG 0.000006048 0.999993952 
AHFBG 0.0002652 0.9997348 
AHFBDG 0.000784992 0.999215008 

Therefore, the probability that at least one path is active is: 1 – (0.9334 x 0.999964198 x 
0.99955774 x …), or 0.145. 
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20.320 Problem Set 3 
Question 3 

#
 
e) 	 Let us now consider a medical application to this biological network analysis problem. 

Suppose that the interaction between protein nodes A and G of the provided PPI 
network is key to the progression of breast cancer. Identify a single node that, when 
inactivated, would maximally reduce the probability of any connection between A and G. 
For this problem, use the probability equations from question 2d and assume that when 
a protein is deactivated, the corresponding node and all its interaction edges are 
removed from the provided PPI network. 

Since removing a node means that all edges involving that node are removed from the network, 
we can calculate a new probability of interaction. We first remove the node and its associated 
edges from the network and then repeat the final calculation from Part d) with the 1-[Joint 
Probability] values of the remaining edges. 

Node Removed Probability 
B 0.086687044 
C 0.145299998 
D 0.013921405 
E 0.145299998 
F 0.10066385 
H 0.106165407 
J 0.145326705 

Removing Node D causes roughly a 10-fold decrease in connections between A and G, and 
may be the most promising target for therapeutic intervention. 

9



 
 

    
   

      
   

 
     

    
 

     
 

 

 
 

 
   

      

 
     

   
     

  
 

  
   

 
   
  
     

       
 

      
 

   
    

 
 

20.320 Problem Set 3 
Question 3 

#
 
In class, we discussed the Metropolis algorithm, which uses the Boltzmann distribution to 
sample states in order to find an absolute energy minimum.  For this question, we will use the 
principles of the metropolis algorithm to find the absolute minimum of a polynomial function. To 
start, download the python file PolyEnergetics.py from the Course website.  

The function poly_energy() in PolyEnergetics.py takes a single number as input and returns 
the value of the function 3x4-4x3-12x2+11 for that number. 

a) Plot this polynomial function for x between -2 and 3.  What are the minima of this 
function? 

The minima of this function are:  

6.00001802001  and -20.9999639479 


b) 	 What minimum would you find if you implemented a gradient descent search starting 
at x = -2?  What is the drawback in using gradient descent searches for energy 
minimization? 

Implementing a gradient descent search starting at x = -2 would only yield the first minimum, 
which is about y = 6. Since gradient descent searches only accept new values of x when 
moving results in a decrease in y, they can only find the first minimum they come to. This way, 
they cannot discriminate between a local minimum and a global minimum. 

c) Complete the code run_metropolis() in PolyEnergetics.py to implement 
metropolis algorithm criteria to sample states (an x-value and it’s poly_energy 
value) with the following specifications: 

•	 The only input should be a float corresponding to a value of KT. 
•	 The search should start at an x-value of -2.0 
•	 Select the next x-value to test by generating a random number between 0 

and 1.  If the number is less than 0.5, decrease x by 0.1.  Otherwise, increase 
x by 0.1. 

•	 Decide whether or not to move to the test state based on the Metropolis 
criteria discussed in class. 

•	 The function should run for 1000 cycles. 
•	 The function should return a list of the energy values at the end of each cycle 

through the algorithm (i.e. 1000 entries per run). 

10
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20.320 Problem Set 3 
Question 3 

#
 

See attached code. 

d) 	 Plot the list of energy values encountered during a search vs. cycle number at a KT 
of 0.1 and 5. Compare the behavior of the algorithm for these two KT values. 

With higher values of KT, the algorithm accepts unfavorable increases in energy more often. 
Since the probability of accepting a higher energy state is exp(-∆E/KT), whether the algorithm 
accepts a higher energy state depends on the energy difference and on KT. For a given ∆E, as 
KT increases, the probability of accepting a higher energy state increases, explaining the spikes 
seen as the algorithm searches for a minimum in the KT = 5 plot. With a low value of KT, the 
probability of accepting the higher state is close to 0, explaining the quick decent to the first 
local minimum the algorithm finds. 

e) Run the run_metropolis() function 1000 times at a KT of  0.7, 2.0, and 5.0.  How 
often does the function get within 0.1 of the global minimum at some point during the 
search?  Explain your results. 

The program outputs the following results, with a KT = 5 reaching the approximate global 
minimum the most often. With higher values of KT, the metropolis algorithm is more likely to 
accept increases in energy that come with moving x values, therefore enabling the algorithm to 
transit across the energy barrier between minima. Physically, this corresponds to a protein 
folding at a higher temperature. Higher temperatures mean that the protein has more energy as 
it folds, resulting in more conformational states being accessible and increasing the likelihood 
that the protein could cross small barriers in the folding funnel to reach the thermodynamically 
favored conformation. 

KT = 0.7 ; # of Successes = 19

KT = 2 ; # of Successes = 494 

KT = 5 ; # of Successes = 731 
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20.320 Problem Set 3 
Question 3 

#
 
## 20.320 Problem Set 3 
## Question 3 Solution 

## Jim Abshire 
## September 22, 2009 

import pylab
import time 
import numpy as np 
import PolyEnergetics 

## Part A: Plot energy function and find minima 
x = np.linspace(-2, 3, 1000) ## Create array of x values from x = -2 to +3 
y = np.array([])
for i in x :   ## Calculate the y values corresponding to each x value

 y = np.append(y, PolyEnergetics.poly_energy(i)) 
pylab.plot(x, y)
pylab.title("Energy Function") 
pylab.ylabel("Energy") 
min1 = min(y[0:len(y)/2])   # Find first local minimum 
min2 = min(y[len(y)/2:len(y)]) # Find second local minimum
print "The minima of this function are: " 
print min1, " and ", min2 

globalmin = min(y)  # Store global minimum for future reference 

## Part D: Plot states accepted over 1000 iterations for KT = 0.1 and KT = 5 
for KT in [0.1, 5] : 

energies = PolyEnergetics.run_metropolis(KT)
 x = range(0, len(energies))
pylab.figure()
if KT == 0.1 : 

pylab.title("KT = 0.1")

else : pylab.title("KT = 5") 

pylab.xlabel("Count")

pylab.ylabel("Energy") 

pylab.plot(x, energies)
 

## Part E: Compute # of times algorithm reaches minimum within 0.1 of global 
##   minimum for KT = 0.7, KT = 2, and KT = 5
for KT in [0.7, 2, 5] :

 count = 0 
 for repeats in range(0, 1000) :  # Run algorithm 1000 times 

energies = PolyEnergetics.run_metropolis(KT)
if (min(energies) < (globalmin + 0.1)) :  # Increment counter if within 0.1 

of global minimum 
 count += 1 

 print "KT =", KT, "; # of Successes =", count 

pylab.show() 
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20.320 Problem Set 3 
Question 3 

#
 
def run_metropolis(KT):

import numpy as np
 energies_encountered = []
cycles = range(0, 1000)
S = -2.0   # Starting x value  
E = poly_energy(S)  # Starting y value 
for i in cycles :   # Iterate 1000 times 

stateshifter = np.random.rand() # Generate random number: 0-1 
if stateshifter < 0.5 : # Half the time, decrease S by 0.1 

 S_test = S - 0.1 
else : S_test = S + 0.1 # Other half the time, increase S by 0.1 
E_test = poly_energy(S_test) # See what happens to the energy at this

new S value 
 if E_test < E :  #  If this move decreased energy, accept  

move right away
 E = E_test 
 S = S_test 
 energies_encountered = np.append(energies_encountered, E)

else :  # If the energy increased after the
move: 

P_boltz = np.exp(-(E_test - E)/KT) # Generate probability of accepting 
based on a Boltzmann distribution 

 stateshifter = np.random.rand()   # If a random number is between 0 and  
the probability calculated above: 

if stateshifter < P_boltz : # accept the new state 
 E = E_test
 S = S_test

 energies_encountered = np.append(energies_encountered, E) 

return energies_encountered 
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