
 
 

    
   

  
        

     
 

       
 

 
  

   
  

 
    

  
   

  
 

 
  

 
   

 
  
  

 
    

 
 

  
  

 
        
     
          
                

                
 

        
   

 
  

20.320 Problem Set 2 
Question 1 

#
 
In the last problem set, we discovered that Histidine 142 is conserved across many variants of 
influenza hemagglutinins and thus may play a key role in mediating their pH-dependent 
conformational change.  Now, we will look at the effects the charge of His142 has on the 
electrostatics of both hemagluttinin conformations. 

a) 	 Write a Biopython code to identify the charged residues in both native HA and HA at 
endosomal pH.  As with PS1, consider only residues 40-153 of HA chain B. 

b) 	 Write a Biopython code to compute the electrostatic potential of each of the 
following: 

I. 	 Native HA with uncharged His142 
II. 	 Native HA with charged His142 (all other histidines uncharged) 
III. Endosomal HA with uncharged His142 (all other histidines charged) 
IV. Endosomal HA with charged His142 

For each case, sum the electrostatic potential of all pairs of charged amino acid using 
the distance between the charged atoms in your calculations.  (Use atom ‘OE2’ for Glu, 
‘OD2’ for Asp, ‘NZ’ for Lys, ‘NH2’ for Arg, and ‘NE2’ for His) Assume a dielectric 
constant value of 3. 

import Bio.PDB 

import math
 
import numpy as np
 
import pylab 


#Histidine is a charged amino acid at endosomal pH 

Native_charges = {'GLU':-1.0,'LYS':1.0,'ARG':1.0,'ASP':-1.0}
 
Endo_charges = {'GLU':-1.0,'LYS':1.0,'ARG':1.0,'ASP':-1.0,'HIS':1.0}
 
Charged_atom = {'GLU':"OE2",'ASP':"OD2",'LYS':"NZ",'ARG':"NH2",'HIS':"NE2"}
 

#Parse PDB file for Native HA, find the charged residues and append their indices to 

Native_index
 
native_range = range(39, 153)
 
Native_charged_residues = []
 
Native_index = []
 
for model in Bio.PDB.PDBParser().get_structure("HA_Native", "3EYJ.pdb") : 


Native_polypeptide = Bio.PDB.PPBuilder().build_peptides(model["B"])[0] 
   for res_index in native_range: 

  if Native_polypeptide[res_index].get_resname() in Native_charges: 

Native_charged_residues.append([Native_polypeptide[res_index].get_resname(), 
res_index+1]) 

Native_index.append(res_index) 

print 'Native Charged Residues'
 
for residue in Native_charged_residues: 


print residue 

#Find the position vector of the charged atom in each charged residue 

Native_positions = [] 

for res_index in Native_index: 


  atom = Charged_atom[Native_polypeptide[res_index].get_resname()] 
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#
 

Native_positions.append([Native_polypeptide[res_index][atom].coord,Native_polypeptid
 
e[res_index].get_resname()]) 


#Parse PDB file for Endosomal HA, find the charged residues and append their indices
 
to Endo_index 

endo_range = range(0, 114) 

Endo_charged_residues = [] 

Endo_index = [] 

for model in Bio.PDB.PDBParser().get_structure("HA_Endo", "1HTM.pdb") : 


   Endo_polypeptide = Bio.PDB.PPBuilder().build_peptides(model["B"])[0]

   for res_index in endo_range: 


  if Endo_polypeptide[res_index].get_resname() in Endo_charges: 


Endo_charged_residues.append([Endo_polypeptide[res_index].get_resname(), 
res_index+40]) 

Endo_index.append(res_index) 
print 'Endosomal Charged Residues' 
for residue in Endo_charged_residues: 

print residue 
#Find the position vector of the charged atom in each charged residue 
End_positions = [] 
for res_index in Endo_index: 

  atom = Charged_atom[Endo_polypeptide[res_index].get_resname()] 

End_positions.append([Endo_polypeptide[res_index][atom].coord,Endo_polypeptide[res 
_index].get_resname()]) 

#Electrostatics for uncharged HIS142 in Native HA 
U_total = 0 
pairs = 0 
for i in range(0,len(Native_positions)): 

for j in range(i+1,len(Native_positions)): 

pairs += 1
 
dist_vector = Native_positions[i][0] - Native_positions[j][0] 

distance = np.sqrt(np.sum(dist_vector**2)) 

U_total +=
 

(Native_charges[Native_positions[i][1]]*Native_charges[Native_positions[j][1]])/(3.0*dista 
nce) 

#Electrostatics for charged HIS142 in Native HA 
#Add Histidine 142 to the list of charged residues 
Native_positions.append([Native_polypeptide[141]["NE2"].coord,Native_polypeptide[141 
].get_resname()]) 
ch_U_total = 0 
ch_pairs = 0 
for i in range(0,len(Native_positions)): 

for j in range(i+1,len(Native_positions)): 

ch_pairs += 1
 
dist_vector = Native_positions[i][0] - Native_positions[j][0] 

distance = np.sqrt(np.sum(dist_vector**2)) 
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ch_U_total += 

(Endo_charges[Native_positions[i][1]]*Endo_charges[Native_positions[j][1]])/(3.0*distanc 
e) 

#Electrostatics for charged HIS142 in Endosomal HA 
End_U_total = 0 
End_pairs = 0 
for i in range(0,len(End_positions)): 

for j in range(i+1,len(End_positions)): 

   End_pairs += 1
 

dist_vector = End_positions[i][0] - End_positions[j][0]
 
distance = np.sqrt(np.sum(dist_vector**2)) 


   End_U_total +=
 
(Endo_charges[End_positions[i][1]]*Endo_charges[End_positions[j][1]])/(3.0*distance) 

#Electrostatics for uncharged HIS142 in Endosomal HA 
#Remove Histidine 142 from the list of charged residues 
del End_positions[37] 
un_End_U_total = 0 
un_End_pairs = 0 
for i in range(0,len(End_positions)): 

for j in range(i+1,len(End_positions)): 

un_End_pairs += 1
 
dist_vector = End_positions[i][0] - End_positions[j][0]
 
distance = np.sqrt(np.sum(dist_vector**2)) 

un_End_U_total +=
 

(Endo_charges[End_positions[i][1]]*Endo_charges[End_positions[j][1]])/(3.0*distance) 

print 'Native HA with uncharged His142' 
print 'Pairs considered: ' + str(pairs) 
print 'U_total = ' + str(U_total) 
print 'Native HA with charged His142' 
print 'Pairs considered: ' + str(ch_pairs) 
print 'U_total = ' + str(ch_U_total) 
print 'Endosomal HA with uncharged His142' 
print 'Pairs considered: ' + str(un_End_pairs) 
print 'U_total = ' + str(un_End_U_total) 
print 'Endosomal HA with charged His142' 
print 'Pairs considered: ' + str(End_pairs) 
print 'U_total = ' + str(End_U_total) 
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Output: 

Native Charged Residues
 
['ASP', 46] 

['LYS', 51] 

['ARG', 54]
 
['GLU', 57]
 
['LYS', 58] 

['GLU', 61]
 
['LYS', 62] 

['GLU', 67]
 
['LYS', 68] 

['GLU', 69]
 
['GLU', 71]
 
['GLU', 74]
 
['ARG', 76]
 

['ASP', 79] 
['GLU', 81] 
['LYS', 82] 
['GLU', 85] 
['ASP', 86] 
['LYS', 88] 
['ASP', 90] 
['GLU', 97] 
['GLU', 103] 
['ASP', 109] 
['ASP', 112] 
['GLU', 114] 
['LYS', 117] 

['GLU', 120] 
['ARG', 121] 
['ARG', 123] 
['ARG', 124] 
['ARG', 127] 
['GLU', 128] 
['GLU', 131] 
['ASP', 132] 
['GLU', 139] 
['ASP', 145] 
['GLU', 150] 
['ARG', 153] 

Endosomal Charged Residues
 
['ASP', 46] 

['LYS', 51] 

['ARG', 54]
 
['GLU', 57]
 
['LYS', 58] 

['GLU', 61]
 
['LYS', 62] 

['HIS', 64]
 
['GLU', 67]
 
['LYS', 68] 

['GLU', 69]
 
['GLU', 72]
 
['GLU', 74]
 
['ARG', 76]
 

Native HA with uncharged His142 
Pairs considered: 703 
U_total = 0.0352466471996 
Native HA with charged His142 
Pairs considered: 741 
U_total = -0.090493015543 
Endosomal HA with uncharged His142 
Pairs considered: 820 
U_total = -0.371365158283 
Endosomal HA with charged His142 
Pairs considered: 861 
U_total = -0.588778130675 

['ASP', 79] 
['GLU', 81] 
['LYS', 82] 
['GLU', 85] 
['ASP', 86] 
['LYS', 88] 
['ASP', 90] 
['GLU', 97] 
['GLU', 103] 
['HIS', 106] 
['ASP', 109] 
['ASP', 112] 
['GLU', 114] 
['LYS', 117] 

['GLU', 120] 
['LYS', 121] 
['ARG', 123] 
['ARG', 124] 
['ARG', 127] 
['GLU', 128] 
['GLU', 131] 
['GLU', 132] 
['LYS', 139] 
['HIS', 142] 
['LYS', 143] 
['ASP', 145] 
['GLU', 150] 
['ARG', 153] 
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20.320 Problem Set 2 
Question 1 

#
 
c) 	 Do the calculated electrostatic potentials make sense? If not, why not?  How could 

we improve our energy calculation? 

For endosomal HA, the electrostatic potential is lower when His142 is charged.  This 
makes sense because the protonation of histidine at the endosomal pH is important for 
HA’s conformational change that allows the viral and cellular membranes to fuse.  Thus 
endosomal HA is at a lower energy when His142 is protenated. 

For native HA, the electrostatic potentials don’t make sense because we know histidine 
is uncharged in the native conformation and thus we would expect that to be the lower 
energy conformation.  One reason that our energy calculations may be off is that we did 
not include the effect of water molecules. 

One area for improvement in our energy calculation would be in choosing which charged 
atoms we consider.  Most of the charged side chains actually exist as resonance 
structures where the charge is shared among the nitrogens/oxygens. For instance, in 
glutamate and aspartate, the oxygens in the carboxylic acid groups are partially double-
bound to carbon and carry a partial negative charge. Together, the carboxylic acid group 
carries a charge of -1.  For instance, we could assign a charge of -1/2 to each of the 
oxygens in the side-chains of glutamate and aspartate and consider the position of both 
in our electrostatic calculations. 
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Question 2 

#
 
Once again we will be looking at the HA2 chain (chain ‘B’ in the PDB files) of Hemagglutinin in 
its native state and at endosomal pH using the same PDB files from problem set 1. 

The conformation potentials used by Chou and Fasman 1 appear in the chart below. These were 
derived by examining 24 protein structures. The Pα/β value for each amino acid is proportional to 
the frequency of that amino acid in alpha helices/beta sheets and has been normalized so that 
they take on values between zero and two. The amino acids with Pα > 1 are assumed to have a 
propensity for α-helices and similarly those with Pβ > 1 are assumed to have a propensity for β-
sheets. Thus Chou and Fasman classified amino acids as strong helix/sheet formers (Hα/β), 
helix/sheet formers (hα/β), helix/sheet indifferent (Iα, iα/β), helix/sheet breakers (bα/β), and strong 
helix/sheet breakers (Bα/β). These are also marked in the chart below. In order to understand the 
Chou-Fasman algorithm, we will use the algorithm to predict alpha-helix propensity in an input 
protein according to the following rules: 

Criteria 1. Helix Nucleation. Locate clusters of four 
helical residues (hα or Hα) out of six residues along 
the polypeptide chain. Weak helical residues (Iα) 
count as 0.5hα (i.e. three hα and two Iα residues out of 
six could also nucleate a helix). Helix formation is 
unfavorable if the segment contains 1/3 or more helix 
breakers (bα or Bα). 

Criteria 2. Helix Termination. Extend the helical 
segment in both directions until terminated by 
tetrapeptides with Pα,average < 1.00. 

Criteria 3. Proline cannot occur in the alpha helix. 

For this problem, you will need to download the 
following files and put them in one folder, including 
the pdb files for native HA (3EYJ.pdb) and 
endosomal pH HA (1HTM.pdb): 
CFalphaPredict.py 
ChouFasman.py 

a) 	Write the parsePDB function in ChouFasman.py to load chain ‘B’ of the proteins and 
return a list of helical residues based on the criteria in PS1 question 1. You must also 
complete the code for the function responsible for alpha-helix prediction - findAlpha(), in 
the Python program CFalphaPredict.py according to the rules above. Attach a copy of 
your code and output. Explain your results. 

ChouFasman.py: 

def parsePDB(fn): 

"""


 PDB file parsed to return:outputs:

 seq == list of the protein's amino acids
 

1 Chou, P; Fasman, G.; “Empirical predictions of protein conformation,” Ann. Rev. Biochem. 47 (1978) 251-276. 
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#

 actual == list of seq indices to residues known to be in alpha helices 

"""


 seq = [] 

 actual = [] 


  for model in Bio.PDB.PDBParser().get_structure("File", fn) : 

  polypeptides = Bio.PDB.PPBuilder().build_peptides(model["B"]) 

  for poly_index, poly in enumerate(polypeptides) : 


phi_psi = np.float_(poly.get_phi_psi_list()) 

phi_psi_deg = phi_psi * 180 / math.pi

 for res_index, res in enumerate(poly) : 


  if res.id[1] >= 40 : 
if res.id[1] <= 153 : 


seq.append(res.resname) 

 if phi_psi_deg[res_index, 0] < -57 : 


  if phi_psi_deg[res_index, 0] > -71 : 

if phi_psi_deg[res_index, 1] > -48 : 


  if phi_psi_deg[res_index, 1] < -34 : 

actual.append(res.id[1])


 print seq 

 print actual

 return seq, actual
 

CFalphaPredict.py 

def P_average(window):
 total = 0.0
 for residue in window: 

total += PA[residue]
 
return (total/float(len(window))) 


def findAlpha(seq,PA): 
""" 
Uses Chau-Fasman criteria to suggest alpha helical regions 
but does not take beta sheets into account 
Inputs:
   seq == (list) the amino acids sequence of the protein 

PA == dictionary whose keys are amino acids and values are the

  CF <Palpha> parameters from the table in your problem set 


PA2 == dictionary of CF a-helix Classifaction for each amino acid
 
Outputs:
 

AHindices == (list) contains the residue indices of seq that are

  predicted to form helices
 

""" 

AHindices=[]
 

#Search for helix nucleation region
 for i in range(len(seq)-5): 


   window = seq[i:i+6]

   if not 'PRO' in window:
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  helix_propensity = 0.0

  breakers = 0
 

for aa in window:
 
if PA2[aa] == 'H' or PA2[aa] == 'h':


 helix_propensity += 1.0
 
if PA2[aa] == 'I':


 helix_propensity += 0.5
 
if PA2[aa] == 'b' or PA2[aa] == 'B':


 breakers += 1 

  if helix_propensity >= 4.0 and breakers < 2:
 

begin = i 

end = i+5 

helix = (begin,end) 

#Extend nucleation region 

while (begin-4) >= 0:


 score = P_average(seq[begin-4:begin]) 

if ('PRO' in seq[begin-4:begin]) or (score < 1.0): break 

else:
 

begin -= 1 #Extend the nucleation region in the N-term direction 
helix = (begin,end) 

while (end+4) < len(seq): 
 score = P_average(seq[end+1:end+5]) 
if ('PRO' in seq[end+1:end+5]) or (score < 1.0): break 
else: 

end += 1 #Extend the nucleation region in the C-term direction 
helix = (begin,end) 


#Store residues in AH indices 

 for n in range(begin,end+1): 


 if not n in AHindices:
 
AHindices.append(n) 


return AHindices 


b) 	Explain the reasons behind the occasional failure of Chou-Fasman alpha-helix 
predictions. 

Chou-Fasman algorithm is based off a very small data set, and therefore is not very 
representative of all proteins. Also the algorithm is based off of alpha helices and does not 
include beta sheets. If a beta sheet requirement was included then the algorithm would be more 
stringent. It also considers only primary structures; therefore if we try to consider the proteins in 
tertiary or quaternary structure, Chou-Fasman would not be very useful. 

c) Using the PyMOL PDB viewer (zip file attached), look at the structures of these two 
proteins. Attach print outs of the structures from the viewer. Focusing on the HIS 142 
residue, explain the differences in the structures. 
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3EYJ:  1HTM:  

Note the major difference between the two images with the HIS 142 residue is that in native HA 
(3EYJ) the HIS is tucked in between the alpha helices, whereas in the endosomal HA (1HTM) 
the HIS 142 residue is exposed on the side. This explains the accessibility of the HIS 142 
residue at different pHs. 
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20.320 Problem Set 2 
Question 3 

In bacteria, the lactose repressor (lacI) is involved with regulating the transcription of genes 
involved in lactose metabolism. When lactose levels are low, lacI is bound to the lac operator, 
preventing the expression of β-galactosidase, which cleaves lactose into its galactose and 
glucose components. The following sequences were investigated for lacI binding in a 1987 
paper mapping the recognition helix of lacI with the lac operator: 

# 

ACTTGTGAGC 
ATTTGTGAGC 
AAATGTGAGC 
AATTGTGAGC 
AACTGTGAGC 
AATTGTGAGT 
AATGGTGAGC 
AAGTGTGAGC 
AGTTGTGAGC 

a) Calculate the log2(odds) matrix for these sequences. Use pseudocounts of 0.0025 for 
zero frequencies. 

In order to calculate the log2(odds) matrix, we first create a table with the number of occurrences 
of each base at each position: 

A 
C 
G 
T 

9 
0 
0 
0 

6 
1 
1 
1 

1 
1 
1 
6 

0 
0 
1 
8 

0 
0 
9 
0 

0 
0 
0 
9 

0 
0 
9 
0 

9 
0 
0 
0 

0 
0 
9 
0 

0 
8 
0 
1 

We can then determine the frequency of each occurrance by dividing the number of 
occurrences by the total number of sequences – in this case, 9. For each zero frequency, we 
insert a pseudocount of 0.25%. We must then subtract the sum of the pseudocounts for each 
nonzero frequency in order to get a total frequency of 1 at each position. This results in the 
following frequencies matrix: 

A 0.9925 0.6667 0.1111 0.0025 0.0025 0.0025 0.0025 0.9925 0.0025 0.0025 

C 0.0025 0.1111 0.1111 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.8844 

G 0.0025 0.1111 0.1111 0.1106 0.9925 0.0025 0.9925 0.0025 0.9925 0.0025 

T 0.0025 0.1111 0.6667 0.8844 0.0025 0.9925 0.0025 0.0025 0.0025 0.1106 

In order to calculate the odds of an occurrence at each position, we assume that each base is 
equally likely to occur at each position. Since there are four bases, we multiply each by 4. This 
results in the following odds matrix: 

A 3.9700 2.6667 0.4444 0.0100 0.0100 0.0100 0.0100 3.9700 0.0100 0.0100 

C 0.0100 0.4444 0.4444 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 3.5378 

G 0.0100 0.4444 0.4444 0.4422 3.9700 0.0100 3.9700 0.0100 3.9700 0.0100 

T 0.0100 0.4444 2.6667 3.5378 0.0100 3.9700 0.0100 0.0100 0.0100 0.4422 
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Taking the log2 of each odds in the above matrix yields: 

A 1.9891 1.4150 -1.1699 -6.6439 -6.6439 -6.6439 -6.6439 1.9891 -6.6439 -6.6439 

C -6.6439 -1.1699 -1.1699 -6.6439 -6.6439 -6.6439 -6.6439 -6.6439 -6.6439 1.8228 

G -6.6439 -1.1699 -1.1699 -1.1772 1.9891 -6.6439 1.9891 -6.6439 1.9891 -6.6439 

T -6.6439 -1.1699 1.4150 1.8228 -6.6439 1.9891 -6.6439 -6.6439 -6.6439 -1.1772 

You are interested in a sequence of DNA from a newly discovered organism with an apparently 
functional lac regulation system. Based on your sequencing results, you predict that lacI binds 
somewhere in the following sequence.  

ATCTCATATAATTGTGAGCTCTAATAGAGTTCATGAGCAATG 

b) Calculate the log2(odds) score for each hypothetical binding site in your sequence of 
interest. Use these values to plot the log2(odds) score for each 10-base window as a 
function of the window starting point. For instance, the first value in your plot should be 
the log2(odds) score of the sequence ATCTCATATA. 

c) Based on your results in Part B, determine the most likely lacI binding site in the given 
sequence. Report the log2(odds) score of your choice. 

The highest log2(odds) score is 18.41, occurring in a window that begins 9 bases after the 
beginning of the sequence. Therefore, the lacI binding site is likely to be AATTGTGAGC. 
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