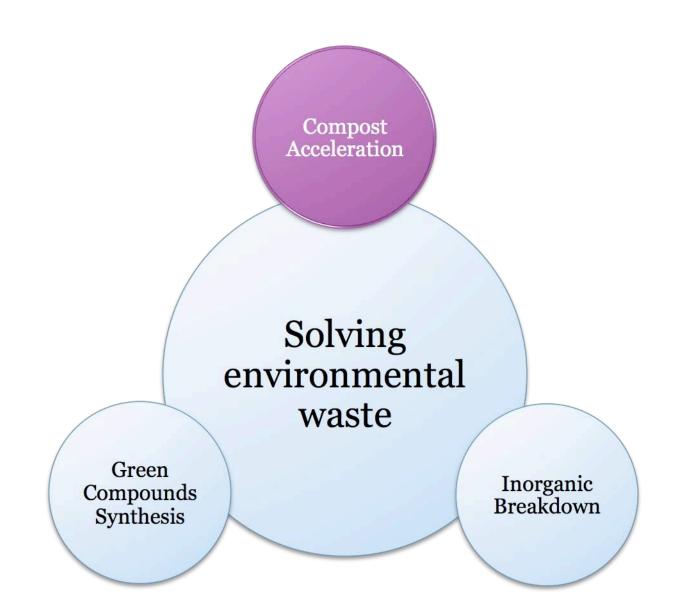
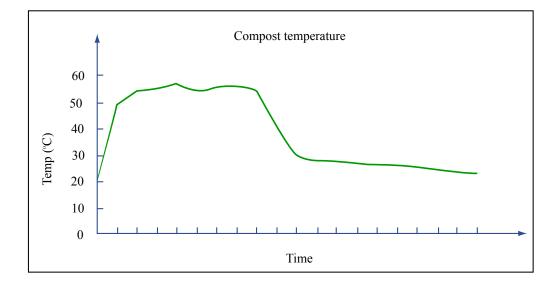
3 Ideas Presentation

Team T³ – Trash to Treasure


Anonymous students SJ, CL, AS and mentor Julie Norville

Problems with trash

- 251 million tons of solid waste generated in 2006 (US)
- 3091 active landfills in the US. Over 10k inactive
- 82 percent of landfills have leaked
- Every square mile of ocean has 46,000 floating pieces of trash


Compost Acceleration

Overview

- Naturally takes a year
- Bacteria operate within
 different temperature zones
 - o-40°C mesophilic topsoil bacteria
 - 40-55 °C thermophilic bacteria ~ similar to hotsprings
 - Actinomycetes
 - Dirt smell
 - Breaks down complex organics

Solving environmental waste

> Iror garic Breakto

Green Compou nds Synthesis

Image by MIT OpenCourseWare, after Cornell Waste Management Institute

Goal

- Use microbes to accelerate the decomposition process
 - Reduction of cycling stages
 - Temperature tolerance increase
 - Metabolic engineering
 - Systems design, tuning and control

Compost Acceleration

Challenge Importance

- Limited composting today
- Landfills continue to grow
 - Locks up potential resources

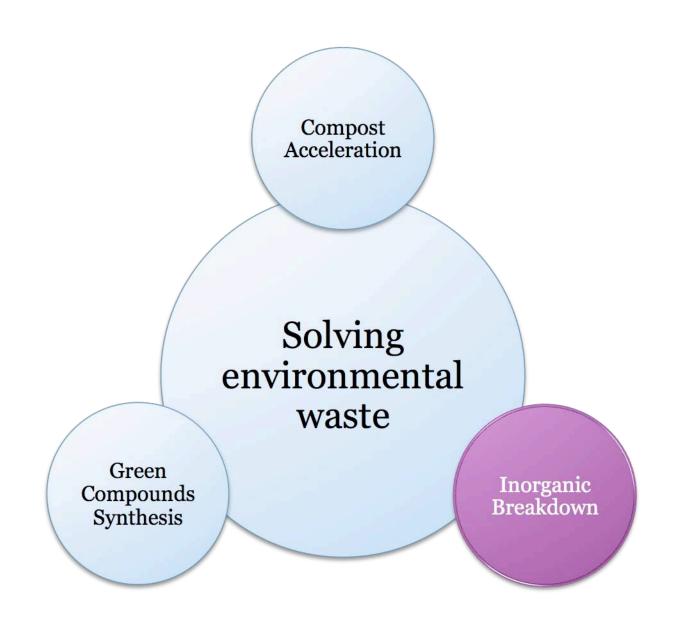
Solution Impact

- Global Impact
 - Eliminate waste in landfills
 - More recycling
 - Possibility of converting waste to energy
 - Increase soil nutrients

Compost Acceleration

Knowns

- Soil bacteria already characterized
- Metabolic pathways
- Public understands basic composting


Unknowns

- Bacterial regulation
- Cost
- Maximum rate of decomposition
- Technology acceptance
- Product usage, disposal & distribution

Competing Technologies

- Composition technology virtually unchanged for centuries
- New methods exist for acceleration
 - Active upkeep
 - Chemistry knowledge
 - Not practical

Inorganic Breakdown

Image removed due to copyright restrictions. Mercury.

Overview

- Preliminary bioremediation exists
- Breaks down toxic compounds into natural environmental compounds
- Also sequestering and cleanup of toxins

Image removed due to copyright restrictions. Schematics of processes for enzyme enhanced and petroleum bioremediation.

Goal

- Getting rid of environmental toxins in a safe and cost-efficient way through microbes
 - Lead
 - Cadmium
 - Sodium Chloride
 - Nuclear waste

Image removed due to copyright restrictions.

a) Graph showing growth in U.S. electronics units: "500 Million units are waiting to be safely recycled today..."

b) Table outlining correlations between toxic materials in electronics and human health risks.

Inorganic Breakdown

Challenge Importance

- Human Disease Causing
 - Neurological disorders (Parkinson's, Alzheimer's, etc),
 - Allergies
 - Hormonal imbalances, etc
 - Degradation in quality of life
- Environmentally Damaging
 - Affects ocean, fish, and other inhabitants of the earth

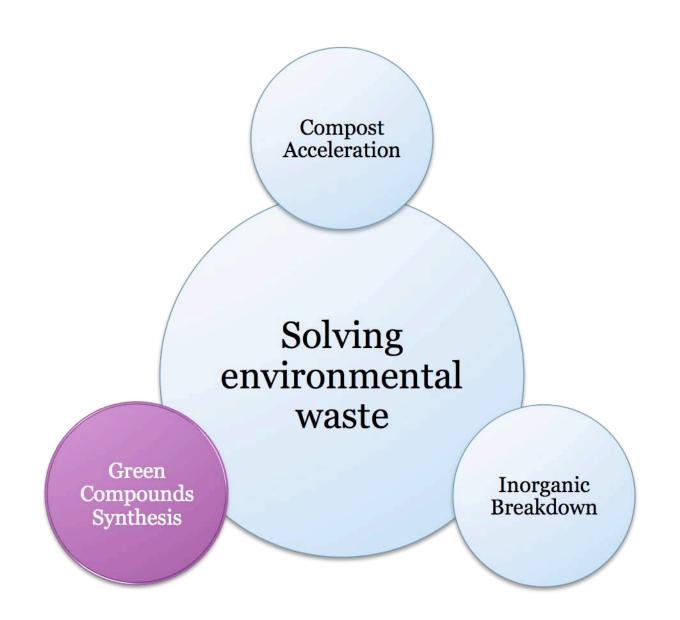
Solution Impact

- Great consequences for not only the United States, but the whole Earth
 - Fewer cases of diseases in all humans and other creatures.

Inorganic Breakdown

Knowns

• Several pathways exist for inorganic breakdown


Unknowns

- Side-effects
- Environmental impact after release
- Effectiveness
- Maintenance
- Circuit reliability (mutations)

Competing Technologies

- Bio-engineered plants
- Chemical / mechanical cleanup systems
- Filters

Green Compound Synthesis

Overview

- Bioplasics
 - Naturally produced as carbon storage mechanism
 - Biocompatible
 - Biodegradable

Photo removed due to copyright restrictions. Degradation of P(3HB-3HV) bottles in aerobic sewage sludge. Figure 2 in Madison, L. L., and G. W. Huisman. "Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic." *Microbiol Mol Biol Rev 63*, no. 1 (March 1999): 21–53.

Goal

- Construction of a comprehensive synthesis platform primarily for bioplastics
 - Tuning
 - Controllability
 - High output

Green Compound Synthesis

Challenge Importance

- Towards millennium goal of sustainability
- Reduce dependence on limited natural resources
- Reduce both waste and toxicity

Solution Impact

- Depends on the cost
 - Low cost alternative would provide huge impact

Compost Accelerat

Solving environmental waste

> Itor ganic Breakto

• Improvements in medical tools and care

Green Compound Synthesis

Knowns

- Various biopolymers and related pathways
- Enzymatic activity and output
- Reactor-level optimizations

Unknowns

- Circuit optimization
- Maximum allowable metabolic strains

Compost Accelerat

Solving environmental waste

> Itor ganic Breakdo

- Cost / Efficiency
- Yield
- Reaction mechanisms
- Granual formation, termination

Competing Technologies

- PLAs
 - Corn-starch / Sugarcane derivative
- Plant-based production
- Re-engineered conventional plastics
- New plastic recycling techniques

Summary

Reduction of overall environmental pollution

 Acceleration of composting
 Inorganic breakdown and sequestering
 Improved synthesis of green compounds

Sources

- "Electronic Asset Recycling." Global Guardian LLC. http://www.globalguardianllc.com/assetrecycle.asp
- L.L. Madison and G.W. Huisman. Metabolic engineering of poly(3hydroxyalkanoates): From DNA to plastic. Microbiology and Molecular Biology Reviews, 63(1):21–53, 1999.
- "Making fast compost with the Berkley method." Compost-infoguide. <u>http://www.compost-info-guide.com/fastcompost.htm</u>
- S. Philip, T. Keshavarz, and I. Roy. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of Chemical Technology & Biotechnology, 82(3):233–247, March 2007.
- Tiedje, J. "Fussy microbe holds promise for environmental cleanup." Bio-Medicine. Oct. 2002.
- "Trash Lady" <u>http://i.ivillage.com/green/90k lb trash lady.jpg</u>
- Trautmann, N. and Olynciw E. "Phases of Composting." Cornell University. 1996. <u>http://compost.css.cornell.edu/microorg.html</u>

20.020 Introduction to Biological Engineering Design Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.