MIT OpenCourseWare http://ocw.mit.edu

4.510 Digital Design Fabrication Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

How does Digital Fabrication Work for architects?

- Method Materializing Design
- Generating Results Artifacts

Digital Fabrication (Systems)

Construction

CNC Fabrication

Rapid Prototyping

Artifacts

(something created by humans usually for a practical purpose)

Vision of Digital Fabrication

Stephen Kieran & James Timberlake

- Increase the quality of the built environment
- Lower building cost
- Integration of building trades

Image of book cover removed due to copyright restrictions. Kieran, Stephen, and James Timberlake. *Refabricating Architecture: How Manufacturing Methodologies are Poised to Transform Building Construction*. New York, NY: McGraw-Hill, 2003. ISBN: 9780071433211.

How is a Design Materialized?

- Materializing a design is transformation of a virtual artifact to a physical artifact
- In theory digital design and digital manufacturing methods will facilitate all forms of constructions
- 2D drafting will be substituted with representations in 3D for fabrication.

Ways to materialize an artifact

- Subtractive
 - Laser cutting
 - Waterjet cutting
 - CAD/CAM cutting

- Additive
 - Layered Manufacturing
 - Mold making

Integrated thinking?

- Benefits of digital fabrication
 - Concept to Construction processing
 - Fewer physical tools
 - Integration of design and manufacturing
- Integration of four sub-fields
 - 1. Material/Structure
 - 2. Assembly
 - 3. Machining
 - 4. Modeling

How is a Design Materialized?

[2] machine & material

Measure

Cut or Build

Assemble

Process

- Translation of a virtual artifact to physical artifact
- Design Language
- Constraints

Figure by MIT OpenCourseWare.

а

Integrated Thinking

- 1. Modeling/CAD
- 2. Assembly
- 3. Machining
- 4. Material/Structure

Error in Fabrication

- Error Correction and Redirection is found in Telecommunications – Ability to detect errors in data transmission across a noisy channel
- What is an architectural Error
- Patterns Interior & Exterior Finishes
- Error is unpredictable & costly

WALL [A]

144 tiles x a = cost

144 + (25 tiles x a (m & c)) = cost

Cost of Error

Wall [A] = - Assembly only

Woll [B] = Assembly + Measure+ Cut

HouseCostTime = $(nWalls \times [A]) + (nWalls \times [B])$

Solutions

Error in fabrication is reduced by

- 1. cutting or building components with precise machinery
- 2. Reduction in the number of parts in construction
- 3. By guiding assembly through smarter components

Results = lower cost, faster construction, higher quality buildings

Methods

Frank Gehry

Kieran/Timberlake

Berhard Cache

Legacy Home Delivery Systems

- Low precision
 - Hand cut parts
- Slow Production
 - Production = (m + c + a) num_parts
- Each cut part is unique
- Most finishes are hand cut on site
- High cost

Stick build

Factory build

Digital Home Delivery Systems

Benefits

- High precision
- Fast fabrication (machine made)
- Reproducible
- High variety
- Low cost
- Safe construction

limitations

Digitally fabricated homes

- 1. Material waste
- 2. Few proven systems
- 3. Labor intensive in design (Building Information Modeling)

Materializing Design @MIT by Larry Sass

Project Data

- One Room with Furniture
- 114 Sheets of Plywood
- **984** components
- Approximate Cost \$2,500
- Translate design model into construction components and fabricate in one month

Generating Compliant Descriptions

Design Model

Construction Model

Cut sheet

Compliance Computational (measurable)

Physical Structural Assembly Material Machine

Visual

Form Spatial (Floor plan) Ornamentation Style

Start CNC Machine

Material Stock 114 Sheets of Plywood

Assembly with a rubber mallet only

Jummary

• How does Digital Fabrication Work for architects

– Skills

CAD Machines Materials

- Method

- Materializing Design

– Results Complaint Artifacts