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QIQI WANG: OK. So today is our lecture on finite volume method. So we talked about finite difference

method. And we are going to be talking about finite volume method and finite element method.

So I'm going to-- there is a request for me to go over what did I do on the matrix form of the

two dimensional finite difference. So I'll go over that. But before I do that, let me show you

what is the difference between finite volume method and finite difference method.

Because there are two concepts, they are two conceptually different methods of describing

and discretizing partial differential equations. So I have a few demos. I have a finite volume

demo. I have a finite difference demo. I have also a finite element demo. So they are really

three different conceptually different methods of solving PDEs.

So first I have a finite difference demo. So let me explain what is happening here. We are

representing a function of x, a function of space in solving partial differential equations. And

this function is going to evolve as a function of time. But in order to [INAUDIBLE] that function

of x, we need to discretize it. Because a function is an infinite dimension [INAUDIBLE]. Like

that. Huh?

AUDIENCE: [INAUDIBLE].

QIQI WANG: I think I-- I think there is something I can get rid of. I just don't know-- Advanced Settings.

Monitor. Yeah. I don't know why. Oh. That went away? Oh OK.

[INTERPOSING VOICES]

AUDIENCE: Don't close that dialogue box.

QIQI WANG: OK. Advanced Settings. Monitor. I think I didn't do anything except for--

AUDIENCE: [INAUDIBLE]

QIQI WANG: Yeah, just like that. Yeah.



AUDIENCE: [INAUDIBLE].

QIQI WANG: OK. Wow.

[LAUGHTER]

I have no idea. This is weird. Technology. OK.

So I have a function of x. I need to discretize it. Can somebody come and draw me a function?

And visualize how this is kind of different, how finite difference discretizes a function. So can

somebody come up and draw a function? And maybe you can describe to me before you draw

the function of how finite difference discretizes the function, how will you [INAUDIBLE] that

function.

How would the-- in a finite difference method, how do we represent, like, obviously a function?

Let me see. These blue lines are where the grid is. [INAUDIBLE], Right. OK. So who wants to

draw it for me? We just did the project. It's a time to relax a little bit. So [INAUDIBLE] the

difference in [INAUDIBLE].

[INTERPOSING VOICES]

QIQI WANG: All right. Good. So when we draw a function, it looks like this. Right? [? If this ?] curve is the

function [INAUDIBLE] a little bit, right? On the-- if not the [INAUDIBLE]. In finite difference, we

forget about that the function is. We only remember the value of the function at these distinct

points. This is finite difference, though.

Do we all have a mental picture of what this does? What finite difference does? And then when

you have approximated derivative, right? For example the derivative here, we can

approximate it either as the slope of this line or as the slope of this line. Depending on if we do

backwards [INAUDIBLE] or [INAUDIBLE]. And in particular we may approximate the derivative

here, [INAUDIBLE] taking this slope. If it's backwards [INAUDIBLE] then we are taking this

slope [INAUDIBLE]. So there are some approximations [INAUDIBLE]. This is what finite

difference does.

OK. So can I invite somebody to do something that is completely unpredictable? Because we

are going to be looking at the same thing. But we're going to be using the same grid. I'm also

going to ask somebody to draw me a function. But now we have a visual of how finite volume



is going to discretize this function. OK. I'm going to type FvDemo. It's the same plot before--

yes, I'm going to ask you to draw the function of the same plot. But can somebody draw--

[INTERPOSING VOICES]

QIQI WANG: And let's see how a finite volume is going to discretize the function. Whoa. OK.

AUDIENCE: [INAUDIBLE].

QIQI WANG: OK. Well, we all see the function in the background, OK? See that? This is how finite volume

[INAUDIBLE] this function if we do that. What do we do? What does finite volume do?

[INAUDIBLE] the function value anywhere?

Would somebody describe to me what we did? What finite volume did? And we're taking like

an average value in between the points, each two grid points. Right? In finite difference, we

talked about grid points. Because we are exploring the value of the function at these grid

points. In finite volume, we are talking about cells or controlled volumes, right? Each space is

in two points, or controlled volume. We are discretizing the function by storing the average

value of the function inside each controlled volume, or inside each cell. OK?

So in particular, if we look at this one, we will have the [INAUDIBLE]. But [INAUDIBLE] for the

average difference. OK. And as we see, when we use finite volume, we need to evolve these

averages. And we know the function value. In finite difference, when we look at the function

value, and the function value, of course, will satisfy the PDE. And the PDE in order to solve the

PDE, we need to approximate the spatial derivative.

Here, we need to evolve this average. And we are going to look at what the differential

equations on this average can [INAUDIBLE], how these averages cannot satisfy the PDE. It

satisfies something else. And this is what finite volume does. It is going to derive from the PDE

a different set of equations than describe the evolution of these averages. And so this

equation set describes the evolution of the averages.

OK. So this is a conceptual difference between finite difference and finite volume. And when

we start finite element, I'm also going to-- well, let me not show you today. OK? If you're

interested in it, you can just go run it at home. I'm going to give you the three scripts. If

interested, you can run it at home and see what you get. [INAUDIBLE] who don't have a tablet,

you can go with your mouse on the function.



So I'm going to give you the scripts later on. But right now let me first focus on and go to our

last lecture folder which is 09. And I'm going to show you a little bit of what exactly we did. The

two dimensional advection question.

OK. So this is the two dimensional advection equation. I think Professor Willcox ran that last

class, right? We have this wavelike thing going on there. Of course, this is not as advanced as

your project. Because we are looking at the constant cx and cy. We're not looking at a cx and

cy responding to the [INAUDIBLE]. So this is actually a simpler script than what you guys wrote

in the project.

But one thing I'm doing differently from the project is that I'm using implicit methods in solving

this equation. [INAUDIBLE]. So in using the implicit time-integration method, I have to use the

matrix form of the finite difference. Right? Does everybody understand why by switching from

explicit to implicit I need to use the matrix form of the finite difference? You don't?

AUDIENCE: [INAUDIBLE]. Does the matrix only have a times b plus something else times [INAUDIBLE]?

QIQI WANG: Exactly. The reason I have to use the matrix form is because in an implicit time-integration

scheme, the spatial derivative is operated not only on time step n but also on time step n plus

1, which is not known before I do the time step. I have a spatial differential operator operating

on some unknown solution. So I cannot compute it explicitly. I have to move that curve to the

left hand side of the question and solve it.

So let me make a new page and show you what this is. Page options. Insert. OK. It's more like

this. [INAUDIBLE]. OK. So in an explicit scheme which would be partial u-partial t equals to, for

example, a simplified version of what you guys did is this, right? This is like the simplified

version of what you did. And if I do explicit time step, and if I use forward Euler, then I can do

U of n plus one minus Un over delta t. That is an approximation of the time derivative.

OK. I can do matrix form. I can do non-matrix form. But whatever I do, I'm making-- I'm either

evaluating distance in matrix form or not in matrix form. But I'm actually computing the

differential operator operated on Un, which is known. The fact that Un is known makes it

possible for me to evaluate this without [INAUDIBLE] the matrix A. Right? This is explicit.

But what if I need to do this? What if I want to use an implicit method? For example, if I need

to do backward Euler, then the difference is that these spatial finite difference operator is

operated on not Un but Un plus one. Well, yes. Where a is finite difference, approximation of



minus partial u-partial x minus partial u-partial y. Right?

OK. So in this case, I do not know what we have for [INAUDIBLE]. Therefore, I cannot just

evaluate-- I can no longer do-- most of you did, which is taking a bunch of indexing with this U

and subtract from doing the indexing or doing the circular shifting of U and subtracting it from

each other. I cannot do that. Because I don't have the n plus one.

What I need to do instead is to move all the Un plus one terms, is I need to move all these

blue terms to the left hand side of the equation and move the green terms to the right hand

side of the equation. So this is what I need to do. I need to move these to this side. So what I

end up getting is identity over delta t minus A of Un plus one is equal to Un over delta t.

So I [? initially ?] was so busy [INAUDIBLE] I did not [INAUDIBLE] must have [? deflated ?] A,

constructed. Right? So that is why, when I am solving-- when I'm using an implicit scheme, I

need to have the matrix form of the finite difference operator.

OK so this is how I did it in the finite difference matrix. I am taking-- so I am constructing the

same derivative matrix I constructed in the [INAUDIBLE] case. This is-- if you let me-- OK. Let

me run this. I get a grid that looks like this. And then when I run this, getting-- If I do a spy on

Ax, I'm getting the same matrix as we get in a one-dimensional case. On the y diagonal, I think

we have something on the diagonal [INAUDIBLE]. Remember this? And Ay has the same

structure. It is almost identical, except for the dimension are a little bit different because the y

direction has a different number of grid points as the x direction.

Then I did something interesting. I did a run of Ax with Iy. So Iy is just an identity matrix. So I

did a [INAUDIBLE] of Ax in Iy. To show what [? connect a product ?] does, I think I just want to

do a spy of the product. This is what gets me. OK. You see, what I'm getting-- let me zoom in.

Let me zoom in using my pen. I think it's a little better. So what I'm getting is a bi-diagonal

matrix. But the [INAUDIBLE] I'm replacing each element in Ax with that identity matrix. So now

this [INAUDIBLE] this is a series of dots. Each dot is one entry of a matrix. There is a bunch of

elements over here. And there is a bunch of elements over here.

So when I'm eventually doing is, OK. If I modify something with this matrix, I'm subtracting-- so

let me look at this one-- I'm subtracting the value corresponding to this column from the

elements corresponding to this column. So I'm subtracting two values that are spaced apart

with the spacing exactly equal to the number of x elements. Right?



So in terms of spacing, if I have-- let me insert another one. If I'm organizing U2 1, U2 2, et

cetera, U 2nx, et cetera, to Uny1, et cetera, Uny2. So if I'm organizing my array like this and

I'm going through-- [INAUDIBLE].

OK. And if I'm organizing my array like this, I'm organizing my array as this one goes to this

one goes to this one goes to this one. So I'm storing this first in memory and then this one and

then this one. And then you want to two in memory and following this. So I am storing one

column the other column then another column, et cetera. Then if my two elements are spaced

apart with ny elements in memory, then it is the exact same, the adjacent elements in the x

direction. That is how my elements are stored in memory.

So which means, if I'm taking derivative in the x direction, my spacing should be ny. And what

happens if I take the derivative in the y direction? What if I do kron of Ix with Ay? Oh. OK. Yes,

I mean this.

OK. When I go to something like this, so if you look at each block-- so I'm getting a periodic

structure. And each block [INAUDIBLE] is exactly the same as the one dimensional derivative

matrix. And once we zoom in over here-- oh, you can't see anymore. But these are individual

dots. So when we take the derivative in the y direction, we are taking [INAUDIBLE] adjacent

values in the array, which is the adjacent value actually in the y direction. So adjacent values in

the x direction are actually spaced over by ny in the memory. So these values in the y-

direction are spaced with only one in memory. That is why we need to use the kron in the

matrix form.

OK. Questions on that? OK. Now let's go to our finite volume analysis. OK. In finding the

volume, we are ultimately going to two dimensional too. Today, we are just going to focus on

one dimension finite volume. And again, in finite volume-- OK. Let me go back to our last

[INAUDIBLE]. In finite volume, we draw a function. And obviously in the function we are only

storing the averages inside each cell.

All right. So let's look at why that is, what kind of equations can finite volume solve? And why

does it solve this kind of equations well? Finite volume only works if you have a conservation

law. Finite volume is not for all differential equations. It works only when you have something

that can be formulated in terms of conservation laws.

And what does conservation law mean? Conservation laws mean the equations that are in this

form. OK. You can have a [INAUDIBLE]. But like you can have a [INAUDIBLE] here. All right.



So this is conservation laws. It's some kind of a conservative quantity. Can be mass,

momentum energy, some molecules, number of [INAUDIBLE], number of people. Something

that can be described as conservative.

This F is the flux. The flux is the number of quantities u that goes through a boundary per unit

amount of time. OK. That's what flux means. All right. And the specific force, the force is how

much quantity, again described in u, is generated, comes out from nowhere, per unit amount

of time.

This is a case, for example, if you have some kind of a-- if u is describing the amount of

molecules and F is the number of molecules generated in an amount of time if you have a

chemical reaction or things like that. All right. And if u is describing momentum, then F is the

flux of momentum through the boundary. And S would be something like the [INAUDIBLE] of

gravity. Something like that. Right? Is it clear what the conservation law means?

The conservation law really makes even more sense if you try to integrate it. OK? So this is

the differential form. Now if you try to integrate the conservation law, it even makes more

sense. And by integrate, I don't mean integrating time. I mean integrating space. So let's

integrate over any control volume. And control volume is described as an interval from L to R.

L is the left hand of the interval. R is the right hand of the interval. So the integral of left hand

side has to be equal to the integral of the right hand side of S, both are dx.

So let's do some manipulation to this integral form. So first of all, the integrative time derivative

in space. Because time and space are two independent variables, the integral in space

[INAUDIBLE] with the derivative in time. So the integral in space of a time derivative is equal to

the time derivative of the integral in space. The first term can be written as this. And this is the

time derivative of [INAUDIBLE] using that control volume. If U is density, then this is the

amount of mass inside the control volume. If U is the density of [INAUDIBLE] like molecules,

density is the total number of molecules in that control volume.

OK. The second term. The second term is not a timed derivative. It is a spatial derivative. Now

what is the spatial integral of the spatial derivative? The function itself. Exactly. So it is F of U

at R minus F of U at L. All right? And let's actually move this to the right hand side. Because it

makes more sense. Let's move it to the right hand side and put a minus sign here, put a plus

sign here.



OK. So this is the result of the spatial derivative term. And the [INAUDIBLE] that's

[INAUDIBLE]. OK. So this is what the integral is going to give us. Now let's try to interpret that

integral. The time derivative of the total quantity within the control volume is equal to the flux at

the left minus the flux at the right. This is what goes into the control volume. This is what goes

on the control volume.

So makes sense? The rate of change of the amount of stuff inside the control volume is equal

to the rate of change for the stuff going in minus the rate of stuff coming out plus the rate of

stuff generated inside the control volume. So this is the integral form. This is the integral form

of the conservation law.

Now why is it important? And how does it relate to finite volume method? Because this is the

equation we are solving in finite volume method. This is the equation we're solving in finite

difference method. Right? We stick with this kind of equation. Because in finite difference

method, the U, we are storing the value of the solution U at individual points. Right? And that is

why we need to approximate the distance, approximate the spatial derivatives [? and it ?] kind

of a finite difference method. And then we can do [INAUDIBLE] for U [INAUDIBLE].

With finite volume method, we are not interested in the solution at individual grid points.

Instead, we are storing the average of the solutions. And the average of the solutions, what is

a mathematical description of an average of a solution in a control volume? What is the

average when we look at the amount of stuff [INAUDIBLE]?

Yeah. It's the amount of stuff in space. If I ask you to write a mathematical formula of the value

of the average as a function of-- in terms of the function within these intervals, what is it?

AUDIENCE: [INAUDIBLE].

QIQI WANG: Exactly. The average would be equal to the integral of this function from 0.6 is 0.7 divided by

the width of the integral, which is 0.1. That is what the average means. And now we have

derived the integral form of the differential equation. And it describes the evolution of the

integral. Do we have the evolution of the average?

Of course. We just divide this thing by R minus L, right? We just divide the whole thing by R

minus L. Then this whole term actually-- let me include the time derivative-- this is the d dt of

the U average. Right? This whole term would be the time derivative of the average value of

the function between L and R. The time derivative of the average value between L and R is



just equal to the amount of stuff going in minus the amount of stuff going out divided by L over

R. Plus the average amount of stuff generated in the control volume. Right?

So the reason we derive the integral form from the differential form is because this integral

form is what is satisfied by the finite volume method, by the volume average. So we use this

form for the finite volume method. Now this form has distinct advantage over this form. Why?

Why is sometimes this form valid while this form is invalid? Can you guys think of a case?

AUDIENCE: [INAUDIBLE].

QIQI WANG: Yeah. Of course, this has derivatives [INAUDIBLE]. This has a spatial derivative. This does not

have a spatial derivative. Right? So in what cases can you not have a derivative?

AUDIENCE: [INAUDIBLE].

QIQI WANG: Yeah. We can have singularities. What kind of singularities have we seen that have no

derivative?

AUDIENCE: [INAUDIBLE].

QIQI WANG: Huh.

AUDIENCE: [INAUDIBLE].

QIQI WANG: [INAUDIBLE]. Shocks. Shocks. Right? We saw-- when you say shocks in solving this kind of

differential equation. Once we have a shock wave, you have a discontinuity over x. Do you

accept you can take the derivative of a shock wave? No. Actually, I'm going to show you. If it

applies to you to define a different method to solve a differential equation with a shock wave,

sometimes you can still [INAUDIBLE]. And you only get correct solution when you use finite

volume method, because finite volume method doesn't care if it has shock waves or not. It

solves the integral form of the equation, which is immune to shock waves, and not even taking

spatial derivative. As long as I can integrate, I can solve the equation. And the solutions with

shock waves have their integral.

All right. So before we go into finite volume method and look at its solution, let's review how

the solutions behave. And I think we can do that review best if we just ran the Burgers

equation phase again. All right. So Burgers' equation. I'm going to draw the initial condition this

time. I haven't drawn it. So I'm just going to draw something that goes up and goes down and



goes up again. OK. And let's look at how the solution evolves.

OK. So this is a typical conservation law. [INAUDIBLE] is one of the simplest conservation

laws. And remember, the solution moves with a speed proportional to the value itself. So if I

have a high value and a positive value, I move toward the right. If I have a negative value, I

move towards the left. Right? This is even more dramatic than the case where everybody's

[INAUDIBLE].

This is the solution we are [INAUDIBLE]. So if I have something moving towards the right and I

have something moving towards the left, and you can very clearly see a shock wave forming

over here. And we can know what the solution is really intuitively because we know at each

point, the solution moves proportional to the value, which if you look at the plot with [?

accuracy ?] in space while at the same time, then the characeristic lines-- which are straight

lines in space and time-- the flow-- or I should say the inverse flow because their speed is

delta x over delta y. So the delta in the x axis over the delta in the y axis.

AUDIENCE: [INAUDIBLE].

QIQI WANG: [INAUDIBLE] is always delta x over delta y. In this case, delta x is [INAUDIBLE] delta y. Delta t

[INAUDIBLE]. Delta x over delta t is kind of the inverse. Does that make sense? I mean, a

speed equal zero is like a vertical line. A vertical line has no delta x but lots of delta t. So it's

low speed. And the line that is very shallow is the high speed line because it has a lot delta x

over small delta t. So we see these are high speed. And these near vertical lines are low

speed. And these lines sloping towards the left are negative speed. They are moving towards

the left. Right?

OK. The solution behaves like this. The characteristics are proportional to the solution itself.

The redder it is, the larger the position is. And the more quantity, the larger the speed is. The

bluer the solution is, the more negative the solution is. And the solution moves backwards at a

negative velocity. This is how the solution behaves in a Burgers equation.

And we also have this shock wave that moves at an average velocity of [? 6.54 ?]. Right? So

we this shock wave moves kind of slowly towards the right. Because if you look at the average

left value and right value, it's slightly positive. So the shock waves moves slightly towards the

right.

OK. That's how the solution for the Burgers' equation behaves. And we need to have a



method to solve the Burgers equation. And we're interested not only in the smooth part of the

solution, but also in the discontinuous part of the solution.

OK let me just do another case and ask you how the solution is going to behave. All right. So if

I have a function u of x for the Burgers equation, the Burgers equation is partial u-partial t plus

U times partial-partial x equals zero. Or in a conservative form, it's partial u-partial t plus partial

u over partial x and half of u squared equal to zero. Right? So this is-- this form is [INAUDIBLE]

u squared out of the spatial derivative.

After a while, can anybody tell me how the solution is going to look? Yeah?

AUDIENCE: Is this periodic?

QIQI WANG: Let's say they are periodic,

AUDIENCE: [INAUDIBLE].

QIQI WANG: Yeah.

AUDIENCE: The shock waves are formed and [INAUDIBLE].

QIQI WANG: Yes. Exactly. So this part moves at a positive speed. This part moves at a negative speed. So

you can really see the solution later on should become something like this. And later on, the

shock wave should form. I actually don't know if it's moving towards the left or moving towards

the right. But the shock wave is going to form over here.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Uh huh.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Yeah. Good point. This part is a little bit [? difficult ?]. So the positive part is still dominant and

the shock wave is going to move towards the right. Good point. OK. So this is how the

equation behaves. And let's see how do we solve it using a finite volume method.

OK. So let me write down the equation again. Partial u-partial t plus partial-partial x of half of u

squared equal to zero. Right? Or in the more general form, I should be writing partial u-partial

t plus partial F of u partial x equal to zero. And to specialize this general conservation law into

the Burgers equation, we just need to set F of u equal to half of u squared.



OK. And again, you find the volume. We are solving for the derivative. OK. Now we need to,

we are solving the-- we are tracking the evolution of this Uk average. And the Uk average is

defined as one over delta x. So delta x in this case is the size of each control volume. OK?

Control volume. OK. Times the integral from the left of the k-th control volume to the right of

the k-th control volume. OK. And the size of the control volume is of course equal to Rk minus

Lk.

OK. The integral is the u of x and t dx. This is my cell average. And in general, this is delta xk,

right? Because each control volume can be different. And here we are just going to talk about

the case with a uniform, uniform mesh. And the uniform mesh responds to delta Xk or r equal

to delta x. And the L of k is equal to k minus one times delta x. And the r of k is equal to k

times delta x.

All right. So the L of 1, the left boundary of the first [INAUDIBLE] is at zero. The right boundary

of the k-th control volume is always the same as the left boundary of the next control volume.

That has to be satisfied for finite volume method. You have to divide the entire space, the

entire domain into non-overlapping into non-overlapping control volumes and leave no empty

space in between. You have to basically partition the entire [? combination ?] domain into non-

overlapping control volumes. And you can't leave anything open.

OK. So now let's take a look at what is the time derivative of this average? To figure out the

time derivative of this average, we have to use the integral form of the conservation law. It is

equal to one over delta k times d/dt of Lk Rk Uxk dx. And by applying the integral form of the

conversion law, we get the flux at the right hand side minus the flux at the left hand side of the

control volume divided by-- oh, we don't need to divide anything because we are looking at the

derivative of the integral. Right? And plus the integral L to R of a [INAUDIBLE] which is zero in

the Burgers equation case. Because in the Burgers equation, we don't have any source then.

The source is zero.

OK. Now we have an evolution equation for the cell average. And up to here, we've made no

approximations. Right? In finite difference, we are approximating the spatial derivative. But

here, we don't need to make any approximations in getting to here. And the flux in this case is

half of u squared at the cell boundaries.

Now this is the point we have to start making approximations. Because unlike in finite

difference, we have the value of the function x at [? these ?] points. But here we don't. We



difference, we have the value of the function x at [? these ?] points. But here we don't. We

don't have the solution at either Lk or Rk. Right? We don't have the solution at the control

volume boundaries. We only have the cell average solution values.

So we have to approximate, we have to do the finite volume approximation. I have to

approximate the flux at rk. I have to approximate it as F of a function. The most simple cases u

bar of x Uk minus one and u bar of k. F at-- sorry, this has to be at Lk because I'm on the left.

Rk has to be approximated as a flux of Uk and Uk plus one.

So let me draw what is happening here. So I have a bunch of cells. This is, let's say, k minus

1. This is k. k plus one. k plus two. Right? OK.

So this point is the left boundary of k minus one. Here is the right boundary of k minus one.

But it is also corresponding to the left boundary of k. This point is the right boundary of k but

also corresponds to the left boundary of k plus one. This point is the right boundary of k plus

one but is also the left boundary of k plus two. This point is the right boundary of k plus two but

also the left boundary of k plus 3.

I need to attach a flux value at each of these boundaries in order to solve this equation. For

this equation, I need to not only resolve the cell average in each cell, I need to have the flux at

these boundary points. But I don't have the solution at these boundary points. All I have is the

cell average inside of the cells.

How do I approximate the flux at these boundaries? It makes no sense to approximate the flux

at this point using the cell averages around that cell boundary. At the left hand side of

[INAUDIBLE], and this is [? like the cell interface ?]. On the left hand side interface is

[INAUDIBLE] right of the interface [INAUDIBLE]. So I need to approximate the flux using the

values.

OK. The easiest way to approximate it is what we call first order upwinds. And upwind means

the reverse of the direction towards which the solution goes. OK. In this situation, can

somebody tell me what is the upwind direction? Yeah?

AUDIENCE: [INAUDIBLE].

QIQI WANG: This direction is the upwind direction? Always? It depends. Right. The upwind direction in the

Burgers equation actually means almost all [INAUDIBLE] conservation laws ends on the

solution. In this part, the solution was here and now moved here. The solution is [INAUDIBLE]



towards the right. It's kind of blown, like blown by the wind, and that comes from the left.

So what is the optimum direction for this part in the red region? It's towards the left, right?

What is the optimum direction over here in the blue region? Towards the right, right? The wind

is coming from the right. So the wind is going this way, if this were the wind. So upwind

direction is looking where the wind is coming from. And in the Burgers equation, the upwind

direction is towards minus x if u is positive. It is plus x if u is negative. This is upwind.

It makes a lot of sense to do upwind because that's where the solution comes from, right? So

you want to-- I'm going to talk about upwinding, why upwinding makes sense really later when

we talk about stability. OK. So upwinding schemes. At this point, I just need to tell you it gives

stability. And in the upwinding scheme, I'm just going to say F of k-- so F at the interface-- so

I'm going to define F of k plus 1/2, defined as F at the right boundary of the k value, which is

also the same as the left boundary of the k plus one cell. It is the flux at the interface between

the k and k plus one cell. Right? I call it k plus 1/2, because it's kind of a halfway between the k

and k plus 1 cell. Right?

And the first order upwind scheme is to compute F of k plus 1/2 is equal to 2 cases. It is either

F of u bar at k, which in the Burgers equation is just u bar of k squared over 2. If the minus

direction is the upwind direction, I'm here again at-- I'm going to draw the same cells again. So

k minus 1, k, plus one.

OK. I am looking at k plus 1/2, which is the interface between k and k plus 1. I am going to use

the average method of k to approximate here. If k is the upwind direction of the cell, which

means if the wind travels towards the right, if locally u is greater than zero. And here locally-- I

can say locally u is greater than zero if the average between the two cells is greater than zero.

And else, I'm going to approximate it using the upwind direction, which is now towards the

right. It is this.

Does it make any sense? This is what I'm going to write in the code. OK. This is what I'm going

to implement in my code. That is, in the [INAUDIBLE] code [INAUDIBLE]. The F at interface is

either the flux at the left value or the right value where [? it is ?]. Any questions on this? No?

OK.

Let's do it then. What I'm going to do is I'm going to pull up a skeleton. And I'm going to ask

you to fill in the blanks. So I'm going to go to the shared border. Open your computers if you

haven't. I'm going to create an order 2014. Today is the 10th, right?



OK. I'm going to start from scratch. I'm going to make a function just called the du dt Burgers.

OK. And like our-- so we're assuming PDEs. But as long as we can convert the PDEs into a set

of ODEs, we know how to integrate it at this point. I'm sure you guys all can.

So what is it going to be? The input is the u bars. And the output is d u bar dt. And what I need

to do is I need to compute from the u bars the du bar dt. So what do I do first? I'm first going to

do F bar is equal to u bar squared over two. What am I doing here?

AUDIENCE: [INAUDIBLE].

QIQI WANG: Computing the flux. This is the only thing I need to change if I switch from the Burgers

equation to some other equation. OK? This is really defining the flux. If I have a flux that is

equal to another form, this is what I need to change. OK. And here, I'm going to have you fill in

the blanks. Compute the flux at cell interfaces. So I need to compute F. Let me call this F of

[INAUDIBLE] k. So this is F at k plus 1/2 equal to blah, blah, blah. This is what you need to do.

OK?

And then what I'm going to write down is this is the finite volume method. This is the same for

all finite volume methods. What is it? It is the d u bar dt equal to-- according to our formula--

du bar dt is equal to one over delta x times the F, the flux, at the right boundary of k, which is k

plus 1/2, minus the F at the left boundary of k, which is F of k minus 1/2. Right?

So this is F k plus 1/2 minus F k minus 1/2 divided by delta x. And I need to compute F of k

minus 1/2. It's basically a [INAUDIBLE] of F k plus 1/2. Let's assume they are periodic

boundaries for now. So how should I compute F of k minus 1/2 from F of k plus 1/2?

I'm going to use circshift, right? And which direction should I shift it? So I already have F of k--

I already have F of k plus 1/2 over here. I need to have-- so if I already have F of k up here, I

need to shift it towards the right to get-- so that's the same point I have, F of k minus 1/2.

So we assume-- let's assume it's a row vector, so that when I shift it, I shift it to 0 and 1. OK.

And let's assume my boundary goes from 0 to 1. OK. So if I have a boundary that goes from 0

to 1, my delta x is equal to the length of the domain divided by the length of u bar, how many

control volumes I have. So that's my delta x.

The size of each control volume? I have F of k plus 1/2, F of k minus 1/2. Then I get the du

bar dt. OK. Go ahead and just copy what I wrote here. Just rename it to whatever. Just



rename it to dudtBurgers underscore your name. You can do it in the same directory. And tell

me what you get.

All right. Anybody have anything I did wrong? I just wrote a script. So it's writing [INAUDIBLE].

So this is basically making [INAUDIBLE]. OK. And using all the input [INAUDIBLE]. So

[INAUDIBLE]. All right? So I'm [INAUDIBLE].

AUDIENCE: [INAUDIBLE].

QIQI WANG: OK. You can try. All right.

AUDIENCE: [INAUDIBLE].

QIQI WANG: OK.

AUDIENCE: [INAUDIBLE]. The function in--

QIQI WANG: Oh. Oh. OK. Oops. I added just--

AUDIENCE: [INAUDIBLE].

QIQI WANG: OK. So this is-- let's see. [INAUDIBLE]. So I goes from one to the length of u bar minus 1. If u

bar is [INAUDIBLE]. You also put I here.

AUDIENCE: [INAUDIBLE].

QIQI WANG: OK.

AUDIENCE: It's be a good idea.

QIQI WANG: Yeah. I think I need to close this so that I don't get a [INAUDIBLE]. OK. It's updated. OK. Let's

run the script again. The driver. Run. Ah. OK. This is--

[INTERPOSING VOICES]

QIQI WANG: OK. Update it again.

AUDIENCE: [INAUDIBLE].

[INTERPOSING VOICES]



QIQI WANG: Oh, you must-- OK. So that's my problem. I need to change it so that I [? deleted ?] a column

vector. Let me [? delete ?] a column vector and [INAUDIBLE] a column vector. OK. Now let's

see. Ah. You're returning a vector of length 63. But the length I should get is 64.

AUDIENCE: Oh, right. So it's returning [INAUDIBLE].

QIQI WANG: Ah. We are assuming the domain is periodic. So at the last control volume, if we need to take

towards the right, we should be taking the first value. Right? OK. Let me see, I see to [? copy ?

] the network, oh.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Into the [INAUDIBLE] [? space ?]. Let me see. Hm. OK. For the last cell, here I think I

[INAUDIBLE] from the [INAUDIBLE], I think that will end after-- so let me see. For r equals from

1 to 10, i n. Yet, if I do i again, it is still 10. It is not 11.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Yes.

AUDIENCE: [INAUDIBLE].

QIQI WANG: OK. [INAUDIBLE] update. [INAUDIBLE] update. OK. Let me do this again. Oh. I need a minus

sign here. Right?

[LAUGHTER]

Is that right? OK. I need a minus sign in my-- OK. I need a minus sign in my script because--

AUDIENCE: Yeah.

QIQI WANG: Right? Is that right? Let me see. So it is equal to the right value minus the left one, which I may

be--

AUDIENCE: Yes, it would be--

QIQI WANG: Should have been the left value minus the right one. Sorry. I have been deriving it incorrectly.

So yes. So for the time derivative of the average is equal to what comes in from the left minus

what goes out from the right. So I need a-- yes, I need a minus. So don't change your code. I

just put a minus sign here.



All right. Now it looks like it's behaving a little bit weirder at the end. Otherwise it seems to be

working.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Let me-- OK Right. So we do see a shock wave developing, right? So let me change the delta t

to be a little smaller. And then run it again. Ooh. Right? That's the correct behavior of the

Burgers equation. Right? OK. Very nice.

So who else-- I think the-- let's see. Yeah. OK. Let me run it again. All right. Great. That's

great. And let me see if I can break it without betraying initial conditions. And let me take it as x

is zero equal to draw periodic function. Do I have that? Oh no. I don't have that in here. So I'm

just going to copy it.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Draw periodic function.

AUDIENCE: [INAUDIBLE].

[INTERPOSING VOICES]

[INTERPOSING VOICES]

QIQI WANG: Let me do that. OK. Let me do something. Anyway, OK. So I see a lot of you are doing good

work. Anybody else? I can try your solution. OK. Ah.

[LAUGHTER]

OK. I think I'm going over time. I had a lot of fun trying your scripts. But let's meet on

Wednesday and talk about more of the finite volume method. So if you want to stay, I'm going

to try a little bit more of your scripts. [INAUDIBLE]. Oops. OK.

AUDIENCE: [INAUDIBLE].

QIQI WANG: Oops. All right. OK . Anyway so once you have a script, you can always try my driver and see

how they work. All right. I'll see you on Wednesday. Yes. If you didn't send me a project here,



please put it over here. And the homework [INAUDIBLE] with the homework.


