MIT 16.90 Spring 2014: Problem Set 9

Qiqi Wang, Karen Willcox

Due: Monday May 5, in class

Problem 9.1 Quadrature

Consider the function

$$
g(\xi)=2+2 \xi-3 \xi^{2}+\xi^{3}+\beta \cos \frac{\pi \xi}{2}
$$

where β is a constant.
We are interested in evaluating the following integral:

$$
I=\int_{-1}^{1} g(\xi) d \xi
$$

1. Evaluate the integral analytically.
2. Compute the approximation to the integral I using a one-point Gaussian quadrature rule.
3. Compute the approximation to the integral I using a two-point Gaussian quadrature rule.
4. For what value of β is your two-point Gaussian quadrature approximation to the integral most accurate? Explain your result.
5. Explain (3-4 sentences) why quadrature is important and useful in the implementation of finite element methods. Give an example of how it might be used.

Problem 9. 2 Monte Carlo Estimators

We wish to estimate $\mathbb{P}\{A\}$, the probability of an event A occurring. A Monte Carlo simulation is performed, and the estimate of $\mathbb{P}\{A\}$ is computed as the fraction of times the event A occurs out of the total number of trials,

$$
\hat{p}(A)=\frac{N_{A}}{N},
$$

where $\hat{p}(A)$ is the estimate of $\mathbb{P}\{A\}$, and N_{A} is the number of times A occurred in the Monte Carlo simulation of sample size N.

1. Through the central limit theorem, we know that for large $N, \hat{p}(A)$ is normally distributed. Prove that this distribution has mean

$$
E[\hat{p}(A)]=\mathbb{P}\{A\},
$$

and standard error

$$
\sigma_{\hat{p}}=\sqrt{\frac{\mathbb{P}\{A\}(1-\mathbb{P}\{A\})}{N}} .
$$

MIT OpenCourseWare
http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

