MIT 16.90 Spring 2014: Problem Set 7

Qiqi Wang, Karen Willcox

Due: Monday April 14, in class

Problem 7.1 Method of Weighted Residuals
Consider the 1D diffusion problem

$$
\begin{equation*}
\frac{\partial^{2} T}{\partial x^{2}}=\sin (2 \pi x), \quad T(0)=T(1)=1 \tag{1}
\end{equation*}
$$

1. Determine the analytic solution to Equation (1).
2. Assume the solution has the following form:

$$
\tilde{T}(x)=1+a_{1} \phi_{1}+a_{2} \phi_{2}+a_{3} \phi_{3},
$$

where $\phi_{1}=x(1-x), \phi_{2}=x^{2}(1-x), \phi_{3}=x^{3}(1-x)$, and a_{1}, a_{2}, a_{3} are unknown constants. Apply the method of weighted residuals using a Galerkin approximation and determine the 3×3 system of equations.
3. Can the 3×3 system of equations be solved to determine a unique solution (i.e., can you determine unique values of a_{1}, a_{2}, and a_{3} that solve the Galerkin method of weighted residuals for this assumed solution)? If yes, give the values of the a_{i}. Create a plot that compares the weighted-residual solution and the exact solution.

MIT OpenCourseWare
http://ocw.mit.edu

16.90 Computational Methods in Aerospace Engineering

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

