MIT 16.90 Spring 2014: Problem Set 3

Qiqi Wang, Karen Willcox, Vikram Garg

Due: Monday March 3, in class

Problem 2.1 Reading Assignment

- 2.1. Overview
- 2.2. Partial Differential Equations.
- 2.3. Introduction to Finite Difference Methods.

Problem 2.2 Stiffness of a flight simulator

Consider the governing equations of our flight simulator

$$\frac{dv}{dt} = \frac{-D - mg\sin(\theta)}{m}$$
$$\frac{d\theta}{dt} = \frac{L - mg\cos(\theta)}{mv}$$
$$\frac{d\alpha}{dt} = \frac{inp - \alpha}{\tau}$$
$$\frac{dh}{dt} = \sin(\theta)v;$$

where *inp* is the yoke input which we assume is a constant for now. $\tau = 0.01$ is the timescale of the static longitudinal stability. Also,

$$D = \frac{1}{2}\rho v^2 A C_D$$
$$L = \frac{1}{2}\rho v^2 A C_L$$
$$C_L = 2\pi\alpha$$

The air density $\rho = 1kg/m^3$. The drag coefficient $C_D = .025$. The wing area $A = 16m^2$. The airplane mass m = 1000kg. The gravity constant g = 9.8.

Linearize the ODE at v = 100m/s, $\theta = \alpha = h = 0$. (Hint: plug both (v, θ, α, h) and $(v + \delta v, \theta + \delta \theta, \alpha + \delta \alpha, h + \delta h)$ into the equations. Remember not to neglect $\delta C_L, \delta D$ and δL .) Write the resulting linear ODE for $(\delta v, \delta \theta, \delta \alpha, \delta h)$ in matrix form. Is the ODE stiff? Why or why not?

16.90 Computational Methods in Aerospace Engineering Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.