MIT OpenCourseWare
http://ocw.mit.edu

16.89J / ESD.352J Space Systems Engineering

Spring 2007

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

16.89 / ESD 352 Final Design Review

May 15, 2006

The 16.89 / ESD 352 Team

Presenting today:
Scott McCloskey
Seungbum Hong
Allan Fong
(Systems Team 3)

Presentation Overview

- Design Challenge
- Executive Summary
- Mobility System Architecture Analysis
- Mobility System Design
- Approach
- Assumptions
- Subsystems
- Vehicle Selection
- Commonality
- Integrated Dynamic Capability Analysis (MUSE)
- Communication and Navigation
- Conclusions and Future Work

16.89 / ESD 352 Design Challenge

- This year's 16.89/ESD. 352 Space Systems Engineering class will engage in the question of how to best architect and design a future, extensible planetary surface transportation system. The system will be designed for the Moon with considerations for eventual adaptation to Mars. In addition, the class will consider how a terrestrial version of the lunar transportation system can be built for testing in lunar and Mars analog sites on the Earth.

DRMs and Architecture Selection

- Broke down activities into 4 Design Reference Missions (DRM):
- DRM-1
- Explore up to 20 km radius on one EVA
- 60 km range total
- DRM-2
- Explore up to 100 (Moon) - 200 km (Mars, Earth) radius over a duration of 5 - 10 days
- 300-600 km range total
- DRM-3
- Resupply the base with cargo located up to 2 km away
- DRM-4
- Use mobility assets to build and maintain the infrastructure of the outpost
- Architecture analysis:
- 2 2-person UPVs for short range exploration
- 3 2-person UPVs and 2 campers for long range exploration

Vehicle Analysis Summary

- Done iteratively in MATLAB
- Lunar exploration:
- 3810 kg camper
- 374 kg UPV
- Commonality
- Camper: Fix chassis geometry
- UPV: Design chassis for Moon and Mars
- Dynamic capability analysis done with MUSE

16.89 / ESD 352 Space Systems Engineering

Slide 5/94

Earth, Moon, Mars Transportation

- Earth
- Use of regular ATVs such as those currently present at Mars Haughton (delivered by Twin Otter plane)
- Minimalist solution, possible because no towing required
- Transportation of camper
- Delivery to Resolute Bay using barge, drive to Haughton-Mars over the ice (like Humvee at Haughton-Mars)
- Likely the most cost-effective solution, although time consuming
- Notional schedule: ship during the summer, drive over the ice the following winter
- Moon
- Delivery of UPVs and campers with a dedicated cargo launch (1 CaLV, 15-20 mt delivery capacity)
- Alternatively: delivery of campers as re-supply vehicles for a lunar outpost, delivery of UPVs with crew, no dedicated CaLV launch required
- Mars
- Delivery of UPVs and campers with a dedicated launch of a CaLV

Mobility System Architecture Analysis

16.89 / ESD 352 Space Systems Engineering

Key Ground Rules \& Assumptions

- Earth, Moon, and Mars systems are used for both exploration and operational testing / improvement
- The mobility architecture selection is driven by DRM-1 and DRM2 operations on the Moon and Mars
- Earth system employs Moon / Mars architecture for operational commonality
- Mobility system masses and geometries have to be within transportation system capabilities for Earth, Moon, and Mars
- Earth appears to be most stringent if existing capabilities are used
- Crew operates always in groups of at least two
- Worst-case overhead over straight-line distance is 1.5 (3 for round-trip)
- Derived from Apollo traverses; factor 1.5 for intentional deviations from straight-line (e.g. Apollo 17 EVA-3)

Surface Mobility Element Model

- Three different types of vehicles can be modeled I sized parametrically on subsystem level:
- Open rover
- Can tow other elements
- Can hold cargo
- Provides accommodations for crew in EVA suits

- Camper
- Provides pressurized environment for crew
- Is not capable of driving without towing vehicle

- Pressurized rover
- Provides pressurized environment for crew
- Is self-propelled
- Can be utilized to tow other elements

Image credit: from Draper/MIT CE\&R report, 2005

Model Flow

- Model provided by Afreen and Seungbum
- Metrics
- Mobility system mass
- Minimize this metric
- Output from vehicle model
- Number of science sites visited
- Maximize this metric
- Calculated using inputs to vehicle model
- Risk, extensibility, performance with loss of asset, and vehicle size were treated as constraints on the architectures

Common ("Fractal") Operations Approach

- DRM-1 excursions represent local traverses in the vicinity of a pressurized habitat, not unlike traverses on Apollo J-type missions
- DRM-2 excursions represent long-range excursions 10s to 100s of km away from the outpost and require independent habitation
- Organizing the DRM-2 excursions into traverse days and exploration days provides the opportunity for conducting DRM-1 excursions from the mobile habitat much like from the outpost
- Potential cost / risk reduction and learning effects from operational commonality, reuse of procedures

DRM-1 Architecture Options

vehicles

- DRM-1 traverses (60 km range) can be carried out with the entire crew, or leaving behind part of the crew back at base $/$ at the LSAM
- Apart from exploration, DRM-1 traverses are also relevant for accessing the base in case of a long landing (in this case all crew have to be transported)
- All crew on traverse have to be able to return to base in case of an SPE and after loss of one unpressurized vehicle within 3 hours
- For each option, average speed was varied from $10-20 \mathrm{~km} / \mathrm{h}$, and different power generation technologies were analyzed

DRM-2 Architecture Options

Pressurized
vehicle type

\# of crew on
traverse
\# of pressurized
vehicles

Unpressurized mobility configuration

- Pressurized and unpressurized vehicles drive at $15 \mathrm{~km} / \mathrm{h}$ average speed
- Unpressurized vehicles are sized such that they can carry excess crew in case of loss of one unpressurized vehicle during DRM-1 type operations
- All vehicles utilize fuel cells (independent of sunshine and solar elevation, more efficient than batteries)
- Pressurized vehicles provide protection and life-support to wait out a SPE

Example Trade Space (Lunar DRM-2)

Architecture Sensitivity Analysis

- Examined sensitivity to model inputs:
- DRM-1
- Range (30-70 km)
- Speed (8-18 km/hr)
- DRM-2
- Sortie Days (3-10 days)
- Range (240-360 km for Moon, 480-720 km for Mars)
- Speed (8-16 km/hr for Moon, 6-16 km/hr for Mars)
- Variation of these parameters had no major impact on the final architecture selection

Lunar Architecture Selection

- 2 2-person campers and 3 unpressurized rovers sized for towing a camper
- 2 of the same unpressurized rovers are used for mobility on sortie missions
- Rationale:
- 1 pressurized vehicle is not acceptable because long-range exploration capability is lost when this vehicle is damaged / permanently unavailable
- 2 pressurized vehicles provide more safety margin
- Assumed that the lunar base can be left unattended for short
 periods of time.

Mars Architecture Selection

- 2 2-person campers and 4 unpressurized rovers sized for towing a camper
- Rationale:
- 1 pressurized vehicle is not acceptable because long-range exploration capability is lost when this vehicle is damaged I permanently unavailable
- 2 pressurized vehicles provide more safety margin
- It is assumed that the base is never unattended on Mars (2 crew stay behind)
- 1 additional unpressurized vehicle is left behind at the base during
 long-range exploration

Camper vs. Pressurized Rover

- Utilizing a pressurized rover in concert with unpressurized vehicles (UPVs) results in duplication of functionality:
- Additional functionality for steering and navigation in pressurized rover (cockpit)
- This additional functionality results in a power, volume, and mass penalty compared to using a camper (excess mass must be transported during the entire traverse)
- Using campers that are guided by UPVs represents a minimalist solution to long-range surface mobility
- Camper crew compartment is inherently similar to the human lunar lander crew compartment (option for commonality, synergy)

Mobility System Design

16.89 / ESD 352 Space Systems Engineering

Mobility Design Approach

- First design the lunar camper and UPV for DRM 1 \& 2, then study the delta to Earth and Mars designs
- Vehicle design is broken down by subsystem and coded into MATLAB modules
- Vehicle characteristics are determined by iteratively running each subsystem module
- MUSE verifies the feasibility of vehicles' design

Basic Assumptions

- 2 crews for camper, 2 crew for UPV
- Total excursion days: 7 days
- Number of driving day: 4 days
- Number of consecutive driving days: 2 days (?)
- Driving or working time per day: 12 hr/day
- Number of EVAs per excursion: 7
- Number of traverses over the lifetime of the vehicle: 125
- ECLS regeneration on camper
- Number of wheels: 4
- Driving system on Camper \& no steering system on Camper
- UPV guides Camper, not tows
- Al structure and chassis

Interface

Comparison of TVM \& PSV

TVM	PSV
Power storage on camper	Power storage on UPV
Driving motor on camper	No driving motor on camper
UPV GUIDEs a camper	UPV TOWs a camper
Radiation protect system	No radiation protect system
Consideration of terrain roughness	No consideration of terrain roughness
More detail model on thermal, comm	Simple model on thermal, comm
Consideration of living space	No consideration of living space

16.89 / ESD 352 Space Systems Engineering

Human Activities Module (1)

- Assumptions
- No Kitchen - MRE's (American)
- No Bunks - Astronauts kip on hammocks spanning width of living space
- Living space is rectangular
- Ceiling is the curved interior wall of "can"
- All space outside living space is usable for storage/supplies
- Basis
- HSMAD
- PSV Model
- Personal Experience RV'ing across USA while growing up

Human Activities Module (2)

- Function
- Volume
- Living space volume determined by summing volumes of things needed per person per excursion that exist in living space
- Storage space volume determined by summing volumes of things needed per person per excursion that may be stored
- Mass
- HA mass determined by summing volumes of things needed per person per excursion
- Power
- Power determined by summing items that draw power for living, EVA's, and interior work

ECLS System Model (1)

Assumptions, ground rules:
-ECLS is only required on the camper -The camper is continuously operated for excursions of 1-2 weeks duration -Over the lifetime of the camper, on the order of 100 such excursions can occur

ECLS functionality:

Mathematical model is based on equipment parameters provided by HSMAD [1]

Provide O2 \& N2 storage
Provide O2 \& N2 feed and control
Provide trace contaminant control
Provide CO2 filtering
Provide CO2 drain and storage
Provide CO2 rejection
Provide food to crew
Provide water storage
Provide water filtration and regeneration

Major ECLS system interfaces:

- To human factors / accommodations: waste management
- To power generation + storage (required power)
- To thermal control (waste heat)
- To structure (mounting, structural integrity)
- To astronauts, cabin atmosphere
- To avionics (control, crew interfaces)

ECLS System Model (2)

Baseline ECLS system design:

ECLS functionality for different use cases / planetary surfaces:

Planetary surface	Earth	Moon	Mars
Provide O2 \& N2 storage		x	x
Provide O2 \& N2 feed and control		x	x
Provide trace contaminant control		x	x
Provide CO2 filtering		x	x
Provide CO2 drain and storage			x
Provide CO2 rejection		x	x
Provide food to crew	x	x	x
Provide water storage	x	x	x
Provide water filtration and regeneration	x	x	x

Example legacy hardware:

Shuttle condensing
heat exchanger
ISS cabin fan

ISS water multi-filtration device (hardware)

- ECLS system extensibility:
- Mars use case requires most functionality due to difficulty in CO2 rejection
- Food and water management are common for all three use cases
- Platform should be lunar design with scarring for Mars CO2 drain, storage and rejection
- Design should be modular so that atmosphere management components can be removed for Earth use case

Thermal Module (1)

- Environmental Inputs
- Solar energy from sun
- Albedo effects
- IR emission from surface
- Vehicle Inputs
- Driving heat produced
- Sci. time heat produced
- Surface area of vehicle
- Average environment heat flux
- Vehicle type
- Sizing
- Heat flow problem: need more heat dissipation or retention?
- Based on HSMAD parametric values
- Trade
- Vertical radiator
- Bi-directional heat radiation
- Additional structural mass
- Horizontal radiator
- Less structural mass
- Uni-directional heat radiation
- Outputs
- Total thermal volume
- Thermal mass on chassis
- Thermal pressurized mass
- Thermal driving power
- Thermal science time power
- Verification
- LRV (for upv only)

Thermal Module (2)

- Assumptions
- Paint absorptivity: 0.2
- Paint emissivity: 0.8
- 1.2 factor on heat inputs
- Radiators on top of camper for better heat dissipation
- Heat dissipation
- Radiation only on Moon
- Radiation, convection on Mars
- Convection on Earth
- Size radiator and support structures to dissipate higher value of heat
- "Delta" between environments can be found, but no redesign of internal fluid paths
- Components

MLI	fluids
Heat pumps	plumbing
radiators	louvers
controls	Structural support

Radiation Module (1)

- Environmental Inputs
- Average GCR
- Solar Particle Events
- Vehicle Inputs
- Surface area of airlock
- Vehicle type
- Sizing
- Keep under NASA radiation requirements
- 50 REM per year
- Trade

Water	Aluminum
Lithium Hydride	Polyethylene
Liquid hydrogen	Liquid methane

Radiation Module (2)

- Assumptions
- Use additional shielding provided by airlock structure, vehicle structure, other components to stop radiation
- SPE protection sized based on the 6 solar particle events in 1989
- Worst case scenario with GCR at solar minimum plus these events
- Astronauts sleep in airlock, which is also the safety vault, so no need to place shielding elsewhere
- Large reduction in mass
- Major questions to answer
- How much radiation is stopped by Mars atmosphere?
- How much lead time will astronauts have before an SPE hits?
- Technology improvement (SOHO, etc)
- Long-term effects of GCR on cancer risks?
- Verification of materials for effectively stopping GCR
- Polyethylene proved ineffective on ISS at stopping GCR cascading effects

Structures (Crew Compartment)

- Assumptions for the model
- Shell thickness will be sized based on pressure difference
- Does not assume different dynamic failure modes
- Inputs
- Human activity dimensions (width and length)
- Internal crew stations dimensions
- Environment conditions
- Outputs
- Structure mass
- Structure volume
- Surface area for radiation system
- Surface area for thermal system

Structures (Crew Compartment) (2)

- Interfaces
- Human activities
- Thermal
- Radiation
- Chassis
- Description
. Skeleton frame material is AI-2219
- Shell material is AI-7075
- Internal pressure kept at 10.2 psi or 0.694 atm
- Frame includes 6 horizontal supports and 4 cross-section ribs
- Reference
- Framework and thickness of skeleton based on airplane specifications
- Earth, Moon, Mars Extensibility?
- Major factors that will change
- External pressure: size the thickness of the shell
- Gravity: loading forces

Chassis

- Assumptions for the model
- Ladder chassis
- Uniform vertically distributed load
- Calculated for an allowable maximum deflection of 0.02 m
- Inputs
- Structure dimensions (length and radius)
- Wheel diameter
- Total mass needed to be carried by the chassis
- Environment conditions
- Outputs
- Chassis dimensions (wheelbase, track, height)
- Chassis mass
- Free chassis volume

Chassis (2)

- Interfaces
- Human activities
- Payload
- Structures
- Propulsion
- Various other subsystem volume and masses
- Description
- Beams have square solid cross-sections
- 2 side rails and 3 cross bars
- Free chassis volume calculated includes volume between the chassis and the crew compartment
- Reference
- Based off ladder model and PSV assumptions
- Earth, Moon, Mars Extensibility?
- Major factors that will change
- Gravity: loading forces

Propulsion: A Few Changes

Propulsion: Inputs and Outputs

Terrain Characterization

Sample terrains for simulation generated from relationships in Apollo and post-Apollo geological literature

Table 2. physical and mechanical properties of lunar soll simulants

	Yuma Sand												
Sol contion	$\underset{(N N a}{a}$	-	$\begin{array}{\|l\|l\|} \hline \mathbf{p}_{6} \\ \left(\xi_{0}\right) \end{array}$	(wim)	$\begin{array}{\|l\|} \left.\hline A^{2}()^{\prime}\right) \end{array}$	${ }_{(060}$	$\left.100^{2}=m_{2}\right)^{2}+0_{1}$	${ }^{\prime \prime}$	$\left(\begin{array}{c} \infty \\ (d) \end{array}\right.$	$\begin{array}{\|c\|c\|} \hline a^{2}\left(m^{\prime}\right) \end{array}$	$\begin{array}{\|l\|l\|} \hline \log _{\substack{0}} \end{array}$		
s,	ast	ar	32	1.51	1.75	osa	601	0.72	13.8	1.45	298	37.1	\bigcirc
c.	0.21	1.02	-	132	1s3	261	216	Q,7	21.6	oss	${ }_{2}^{2} .1$	34.6	0.28
c_{1}	1.26	0.4	14	138	1.00	0.21	8.03	0.67	33.	0.97	290	36.0	oss
c_{4}	4.17	0.83	52	1.48	1.80	450	10.08	as2	152	214	31.2	38.4	1.10
Cowhere meat													
	0.2	0.0	3	1.52	1.63	0.42	432	0.90	29.0	Qn	340	35	0
$\begin{gathered} \text { LS5, } \\ =- \text { (Internodiate } \\ \text { Demity-Ar Dry } \end{gathered}$	${ }^{1} 6$	ass	42	1.58	1.69	0.13	5.34	1.15	29.0	1.03	350	320	03
LSS - (Demeesit Des)	1.8	ar4	52	1.66	1.78	1.88	88	148	288	1.30	35.	400	ar
Lss, -LLow Moino	1.0	090	3	1.58	1.63	1.76	s.04	1.18	300	ass	34.0	ses	Q8
LSS, -(DenerMait)	6.	as9		1.71	1.83		(Not	nalube)			360	415	29

e-Vestratio
$\mathrm{D}_{\mathrm{t}}-$ Retation tenesty

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

Traverse Performance

$$
h \leq 0.5\left(\left(D_{W}+D_{O}\right)-\sqrt{\left(D_{W}+D_{O}\right)^{2}-b^{2}}\right)
$$

Based on geometric navigability of obstacle field, combined with path planning constrained by vehicle geometry and dynamics

Steering

- Assumption
- Electronic power steering
- Wheel turning angle is $5 \mathbf{0}^{\boldsymbol{\circ}}$
- Inputs
- \# of steered wheels
- Sprung mass
- Wheel base, track
- Outputs
- Steering mass
- Turning Radius

Steering (2)

- Interfaces
- Chassis
- Various other subsystem masses
- Description
- Ackerman steering model
- Reference
- Motor Truck Engineering Handbook, pg 326

Power Module

- Inputs
- Power levels for various power modes from each subsystem
- Traverse duration
- Energy needed for UPV science traverse
- Outputs
- Power subsystem mass and distribution
- Thermal power to dissipate
- Amount of water produced

Power Module (2)

- Power is stored in primary fuel cells
- From the power usage and times, calculates energy and sizes the fuel cell reactants
- From the peak power, sizes the distribution and conversion components
- Based largely on the PSV code and adapted for our TVM
- Extensible to Earth and Mars

Suspension

- Assumption
- Quarter-Car Model
- Passive Control
- Inputs
- Sprung mass
- Wheel mass
- Tire Stiffness

- Outputs
- Spring Stiffness
- Damping Coefficient
- Suspension Mass

Suspension (2)

- Interfaces
- Propulsion
- Various other subsystem masses
- Description
- $a_{\text {RMS }}=\sqrt{\frac{1}{T} \int_{0}^{T} a_{w}^{2}(t) d t}$
- Evaluate the vibration of the vehicle against ISO 2631-2 criteria
- Reference

- Theory of Ground Vehicles, Wong, 1978
- ISO 2631-2

Camper Design Specifications

CAMPER	dimensions (m)		vol (m^{3})	mass (kg)
Crew compartment	radius	1.63		275
	length	3.11		
Comm.	antenna height	1		10
Chassis	wheel base	3.64		321
	wheel track	3.49		
	height	0.076		
Avionics			0.248	200
ECLSS	O2N2 tanks		0.0966	358
	H2O tanks		0.1428	
Payload	equipment		0.53	482
Propulsion	Wheel dia.	1.6		229
	Wheel width	0.5		
Radiation	around shell		0	840
Suspension				355
Power	total		0.27	364
	water		0.151	
Thermal	vert. radiator		0.5281	226
	MLI		0.55	
	pump		0.06	
Samples			1	150
		Total M	Mass (kg)	3810

\square Crew compartment
\square Chassis
\square^{-}ECLSS
\square Propulsion

- Suspension
\square Thermal

Communication
\square Avionics
\square Payload
\square Radiation
\square Power
\square Samples

Camper Design Concept

UPV Design Specifications

\left.| UPV | dimensions (m) | | vol (m |
| :--- | :--- | ---: | ---: | ---: |$\right)$ mass (kg)

CAD Model - UPV

16.89 / ESD 352 Space Systems Engineering

Slide 49/94

Power Distribution

Camper (Watts)	always	driving	science (day)	night				
Propulsion		1205						
Thermal		73	87	87				
Avionics	300	300	400					
Comm	96	96	96	96				
HA			150	150				
ECLSS	80	80	900	900				
Payload (Science)			100					
Steering								
sub Total	476	1754	1733	1233				
Total with 15\% margin	547.4	2017.1	1992.95	1417.95				
UPV (Watts)		driving						
Total with 15\% margin		852						

UPV -Camper Combination

16.89 / ESD 352 Space Systems Engineering

Vehicle Analysis

Commonality, Sensitivity, and Extensibility for Different Environments

16.89 / ESD 352 Space Systems Engineering

Vehicle Sensitivity Analysis

- Used PSV model to determine effects planet has on the design
- Analyze mass of subsystems on different planets, multipliers, and absolute differences
- Important scaling factors

System	Earth	Mars
Chassis	gravity $\left(9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$	gravity $\left(3.3 \mathrm{~m} / \mathrm{s}^{\wedge} 2\right)$
ECLSS	breathing-air ventilation	CO2 control
Human activities	no airlock	similar to Moon
Propulsion	terrain and gravity	terrain and gravity
Radiation	None required	thickness, environment
Shell structure	external pressure	external pressure
Power	Temperature difference	Temperature difference
Thermal	Heat absorb, convection	Heat absorb

PSV Camper Sensitivity to Surface Environment

- Mass variation from the Moon design:
- Earth: crew station, chassis, propulsion
- Mars: chassis, propulsion, power
- Subsystems are predominately most massive in Mars design

PSV Camper	Mass (kg)			Ratio		Absolute Difference	
	Moon	Earth	Mars	Mars/Moon	Earth/Moon	Moon-Earth	MoonMars
crew station mass	1239	816	1238	0.999	0.659	423	1
communication	32	32	32	1.000	1.000	0	0
chassis	109	268	219	2.009	2.459	-159	-110
wheel	44	91	102	2.318	2.068	-47	-58
suspension	160	150	190	1.188	0.938	10	-30
drive system	28	107	62	2.214	3.821	-79	-34
power	113	136	207	1.832	1.204	-23	-94
thermal	75	67	87	1.160	0.893	8	-12
steering	22	20	23	1.045	0.909	2	-1
TOTAL	1822	1687	2160	1.186	0.926	135	-338

PSV ATV Sensitivity to Surface Environment

- Mass variation from the Moon design:
- Earth: chassis, propulsion, power, thermal
- Mars: chassis, propulsion, power
- Design for system for Moon and Mars

PSV ATV	Mass (kg)		Ratio		Absolute Difference		
	Moon		Earth	Mars	Mars/Moon	Earth/Moon	Moon-EarthMoon- Mars
communication	16.21	16	16	0.987	0.987	0.21	0.21
chassis	32.74	194	65	1.985	5.925	-161.26	-32.26
wheel	11.16	54	63	5.645	4.839	-42.84	-51.84
suspension	11.23	39	23	2.048	3.473	-27.77	-11.77
drive system	10.73	47	21	1.957	4.380	-36.27	-10.27
power	20.52	43	39	1.901	2.096	-22.48	-18.48
thermal	4.78	16	7	1.464	3.347	-11.22	-2.22
steering	9.2	11	10	1.087	1.196	-1.8	-0.8
				2.10	3.62		

Commonalities

- Highlights major varying subsystems
- 2 design options

Vehicle Commonality Conclusion

- Fix chassis geometry
- Common chassis design for different environments
- Vary beam profiles to account for different loads
- Allows for swappable subsystem modules
- Reduce multiple chassis design cost
- Crew station, wheels and propulsion need to be modified based on terrain and external environments
- UPV design for Moon and Mars
- Customize existing ATVs for Earth operations
- Over-designed UPV chassis can be beneficial to DRM 3 and DRM 4 operations on the moon

DRM 3 and DRM 4 Briefly Revisited

- DRM 3
- Resupply within 3km
- Move cargo from lander to base (lifting, towing)
- Astronaut manipulable "briefcases" (~100 kg)
- Medium-size modules that need manipulation assistance (~500 kg)
- Large pallets with built-in mobility ($\sim 2 \mathrm{mt}$)
- Moon outpost mission: 7.3 mt for consumables
- DRM 4
- Infrastructure buildup within 3km
- Move regolith to provide blast protection, radiation/thermal shielding, initial ISCP
- Deploy small equipments
- Connect base modules with wires, etc.
- Light surface construction
- Cable bundle estimate: 300 kg and 0.3 m3
- Large science instruments are ~25 kg
- Estimated mass: 250-300 kg for backhoe, $150-200 \mathrm{~kg}$ for dozer blade

Extensibility DRM 3 and DRM 4

- Approximate horizontal force ~ 6x10^6 N
- Approximate digging/lifting force ~2,296 N
- Plowing ~6x10^6 N
- Lifting capacity $\sim 1,408 \mathrm{~kg}$
- Bucket Capacity ~ 0.04 m^3
- Average regolith density ~ $1,250 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
- Moon gravity ~ 1.63 m/s^2

Integrated Dynamic Capability Analysis (MUSE)

16.89 / ESD 352 Space Systems Engineering

Mission Utility Simulation Environment (MUSE)

16.89 / ESD 352 Space Systems Engineering

Roles of MUSE

- Validation tool of vehicle capabilities
- Vehicle architecture design ("static" model)
- MUSE ("dynamic" model)
- Iterative design
- Enables debugging of vehicle model and MUSE simulation
- Enables convergence to overall design
- Identification of consumable modularity opportunities
- Environment incorporating all the key components:
- Terrain
- Vehicle design
- Logistics (consumables, human activities)

DRM-1 \& DRM-2 Exploration Strategies

- Four DRM-1 exploration types

Spiral

Search in expanding circle around origin

Loop
Travel out and come back on different path

Area Search
Travel to distant site and explore sites in vicinity

Grid Search

Travel to sites along survey grid lines

- Each location is either a "site" or a "region" (collection of four closely-spaced sites)
- Locations of interest are $\sim 3 \mathrm{~km}$ apart (from Apollo)
- DRM-2: drive directly to camp site, perform DRM-1's

DRM-1 Simulation Tsiolkovsky Crater

MUSE DRM-1 Simulation

Number of sites visited: 0

Modeling DRM-1
 Traverse

Site

Propagate over Terrain Decrement energy Increment time

Spend time at site/region Increment payload Increment time

Check constraints: If don't have enough time/energy to get to next site, drive back

Modeling DRM-2

Modeling Propulsion-Terrain Interaction

Constraints

- MUSE guarantees vehicles always return to base
- Enforce time and energy capacity constraints

Statistics of Excursions in MUSE

- Run the DRMs with multiple different parameters
- Can get statistical sampling of excursions
- Try to abstract out site selection / terrain as much as possible
- Changed the following parameters
- Exploration Types (search patterns)
- Science site types (site vs. region)
- Operations at science sites
- Origin locations (DRM-1)
- Hab \& Camp Locations (DRM-2)

Design Iterations: Vehicle Model \leftrightarrow MUSE

- Results of first iteration
- UPV energy storage was far too high
- Used only 10-25\% of energy stored onboard
- Camper had insufficient power to reach camp (no exploration possible)
- Feedback to vehicle design team
- Reviewed power consumption strategies
- Verified propulsion model
- Modified design selections
- Removal of some power consuming items
- Lowered energy capacity on UPV

CDF of remaining energy capacity onboard at end of DRM-1 excursion

Min remaining: 76\%
Max remaining: 95\%

- $2^{\text {nd }}$ iteration design input into MUSE for final results

Results: Energy on DRM-1

At the end of a DRM-1 excursion...

6% chance of using some of the 15% safety margin

Results: Sample Collection on DRM-1

At the end of a DRM-1 excursion...

30% probability of running out of sample mass capacity

CDF of Sample Volume Capacity Remaining on UPV upon Return to Base for DRM1

Always have at least 77% sample volume capacity available

Results: Exploration Capability on DRM-2

Once at the camp during DRM-2...

- Evaluate remaining resources after the camper travels from hab to camp
- Find the number of DRM-1 excursions that are possible at the campsite using resources on camper
- Assume all consumables for DRM-2 are on camper
- No additional supplies brought specifically for exploration

Results: Exploration Capability on DRM-2

Energy Diagram for DRM2 Mission 2

Energy Diagram for DRM2 Mission 1

DRM-1 Capability Metric Results

- Metric: number of sites per excursion
- Expectation: 5.71
- Standard Dev: 3.02

DRM-2 Capability Metric Results

Histogram of Energy Available for DRM-1 Activies

- Metric: number of
DRM-1s per DRM-2
- Expectation: 0.80
- Standard Dev: 0.75
- Next camper design iteration should have more energy onboard
\# of DRM-1s

Consumable Modularity Comments

- Modularity of vehicle energy supply
- Improves matching energy requirements to DRM-1 excursions
- Also an area of potential commonality among vehicles/planets

- Modularity of ECLSS supplies
- May extend excursion capabilities in some instances
- Reallocate supplies as necessary (nominal and contingency ops)

Communication and Navigation

16.89 / ESD 352 Space Systems Engineering

Comm / Nav Architecture Review

- Communication strategy
- What is needed where it is need as it is needed
- Navigation strategy
- Hybrid: gyroscope + odometer, map, beacon network
- Hard communication requirements:
- Must transport data from mobile to Earth at some point
- Must have continuous communications between the base and mobile regardless of line-of-sight
- Soft communication requirements:
- Should transport data from mobile to Earth continuously
- Should be extensible across all missions
- Should be cost-effective for required level of performance
- Amount of use system sees per dollar spent on the system

Communications Evolvable Architecture

16.89 / ESD 352 Space Systems Engineering

Ground Network Analysis

- Goal of analysis
- Determine if a ground network could replace a satellite
- Provides comparable performance at a fraction of the price

(items in red studied in detail)

Ground Network Analysis Methodology

- Terrain models
- Use simulated terrain data to evaluate terrain effects on relays
- Based on power spectral density of lunar terrain

Smooth Mare

Hummocky Upland

Rough Mare

Rough Upland

- Analysis
- Start at point on map and move in straight direction
- Place relays when needed to maintain connectivity
- Determine how many relays required
- Metric: average distance between relays
- A measure of number of relays needed

Trade between Range and Energy

- Limitation: uses line-ofsight (LoS) for connectivity
- LoS implies:
- All obstacles below LoS path
- Received energy approximately the same as transmitted energy less space loss due to distance
- Relaxing LoS assumption:
- Range will increase but received energy subject to knife-edge diffraction losses
- Can compensate for energy by using appropriate link margin

Ground Network Analysis Methodology

- Design variables in the analysis

Property	Parameterization
Terrain type	Four map data sets
Deployment strategy	Two relay placement algorithms
Start location	Set of starting site map locations
Relay height	Various heights (0 to 5 m$)$

- Parameter study
- Different maps
- Same map, different deployment strategies
- Same map, different start locations
- Same map, different relay heights

Relay Deployment Strategies

- Straight-line deployment
- Drive in a straight line
- When connectivity lost, place relay behind
- Simplest deployment method
- Operationally easy, lower workload
- Upper bound on relay requirements
- Doesn't take advantage of local terrain (tops of hills)

End of visible area, place relay

- Adaptive deployment ("cannon method")
- Drive in a straight line
- When connectivity lost, place relay at nearby point of highest elevation that has connectivity
- Search within a specified radius (5-10 m away from vehicle)
- Straight-line better: problems with adaptive algorithm

Straight-Line Deployment Simulation

16.89 / ESD 352 Space Systems Engineering

Analysis Outputs

Relays on Elevation Map

Number of Connections Map

Connectivity Map

Simulation Properties	
Terrain type	Hummocky Upland
Deployment strategy	Straight-Line
Relay height	1 m

Simulation Results	
Number of relays	12
Average Connections	3.43
Distance / relay	22.5 m

Parameter Study Results

Parameter Study 1: Start Locations

 Hummocky Upland terrain, $1 m$ relays| | Min | | Max | Avg |
| :--- | :---: | :---: | :---: | :---: |
| | Stdev | | | |
| Number of relays | 8 | 13 | 9.9 | 1.5 |
| Avg connections | 2.3 | 4.3 | 3.1 | 0.6 |
| Distance / relay | 14.6 | 22.2 | 18.6 | 2.5 |

Parameter Study 2: Terrain Types

 $1 m$ relays, straight-line deployment

Parameter Study 3: Relay heights Hummocky Upland terrain, straight-line

Communication Conclusions

- Relay requirements are site specific
- Not just dependent on terrain type
- Rougher terrain requires more relays
- But even smooth terrain needs one every 20 m
- Inevitably large number of relays of reasonable size
- Significant improvements with higher relays (>0.5 m)
- Alternate deployment schemes \& terrain effects could help lower the number of required relays

Communication Future Work

- Relax LoS assumption in analysis
- Incorporate knife-edge diffraction model
- Add trade off with power and antenna gain
- Consider improved deployment strategies
- Better adaptive deployment algorithms
- Introduce a priori global knowledge of terrain
- Integrate relay deployment with vehicle design and operations models

Summary

16.89 / ESD 352 Space Systems Engineering

Conclusions, Accomplishments

- Value delivering activities on the surface were captured in the four types of design reference missions
- Representative for major exploration surface activities
- Independently confirmed superiority of camper architecture
- Elimination of duplicate functionality and flexibility
- Created a set of subsystem models with more resolution compared to PSV
- Mostly physics-based / engineering-based models
- Created a versatile integrated capability modeling framework for surface operations based on vehicle designs
- Generated design specifications (including CAD) for an extensible planetary surface mobility system
- Dedicated UPV and camper designs, both with a common core and extensible modules for Earth, Moon, Mars environment customization
- Had fun, learned a lot

Future Work

- Create more detailed subsystem models taking into account COTS, modularity, effects of geometrical design
- Further refine the interface between vehicle model and MUSE for more enhanced capability analysis
- Based on 16.89 results and future modeling:
- Build virtual and physical mockups (CAD, rapid prototyping, fullscale mockups)
- Use mock-ups for human factors, operability analysis
- Build a camper prototype and perform field testing
- MUSE
- Extend the analysis framework to Mars, Earth
- Incorporate terrain data for the entire planetary surface
- Extend to include ECLSS consumables
- Structure already in the code
- Incorporate more logistics, comm/nav

Thank you

Questions?

16.89 / ESD 352 Space Systems Engineering

Backup Slides

16.89 / ESD 352 Space Systems Engineering

Ground rules \& Assumptions (2)

- Pressurized mobility assets provide adequate shielding and life-support to survive and wait out a solar particle event (SPE)
- There exists a capability to forecast major flares with lag times between electromagnetic and particle radiation of less than an hour
- Capability is currently being developed (SOHO)
- Crew has to be able to return to a sheltered environment in under 3 hours in case of a SPE
- Limited exposure to SPE ionizing radiation flux is acceptable (see dosage limits for short-term exposure)

Camper Dual Use: Re-Supply and Mobility

Human lunar lander concept using 2 crew compartments

$2^{\text {nd }}$ crew compartment could be common with camper

Camper used as
"lunar surface MPLM" before mobility use

- Camper crew compartment provides limited pressurized volume
- Same functionality as human lunar lander crew compartment
- Opportunity for commonality
- Opportunity for accretive build-up of a surface outpost
- Re-supply of an outpost on the lunar surface is key to long-duration lunar exploration (DRM-3)
- Non-trivial task, because of large amount of pressurized consumables
- Camper could serve as lunar surface MPLM before being used for surface mobility: option for dual use of mobility hardware resulting in cost-reduction

Possible Strategies to Improve Robustness

- Redundant coverage
- Drop 2 relays at each relay location
- Single fault-tolerant
- Sensitive to location-based disturbance

- Drop relays close enough to provide double coverage
- Single fault-tolerant
- Not as sensitive to location-based disturbance
- May require some power increase to compensate for terrain

Possible Strategies to Improve Robustness

- Emergency power-ramping
- In event of a failed relay:
- Ramp up power to compensate for signal loss from terrain, distance
- Improve power efficiency by decreasing data rate
- Single fault-tolerant
- Time limitations before onboard power drops too far

Possible Strategies to Improve Robustness

- Consider different antenna design concepts:

Possible Strategy to Improve Robustness and Coverage

- Trade increased range for lower data rate in emergency
- Assumes navigation payload can achieve greater range
- Limitations for this strategy need to be analyzed

Navigation Architecture

- Trilateration

- Navigation payload on communication relay
- Navigation pings should have greater range than communications
- Use pinging process
 and clock synchronization to determine range

Extensibility DRM 3 and DRM 4

- Approximate horizontal force ~ $6 \times 10^{\wedge} \mathbf{6} \mathrm{N}$
- Approximate digging/lifting force $\mathbf{\sim 2 , 2 9 6} \mathbf{N}$
- Average regolith density $\sim 1,250 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$
- Moon gravity ~ 1.63 m/s^2
- Bucket Capacity ~ 0.04 m^3
- Based on SOLAR 010 and 015 Plus
- Lifting capacity $\sim 1,408 \mathrm{~kg}$
- Plowing ~6x10^6 N
- Towing ~ ?

Average Bulk Density of Regolith $\mathrm{g} / \mathrm{cm}^{\wedge} 3$ $\left(\mathrm{~kg} / \mathrm{m}^{\wedge} 3\right)$		Depth range (cm)
1.50	(1500)	$0-15$
1.58	(1580)	$0-30$
1.74	(1740)	$30-60$
1.66	(1660)	$0-60$

Science Payload

UPV Payload	
Time Of Flight-Mass Spectrometer	10 kg
Mars Organic Analyzer	11 kg
Spares and consumables	4 kg
Survey equipment	15 kg
Shovels, hammers, corers	30 kg
Atmospheric samplers	30 kg
Still/video cameras	20 kg
Hand lenses	2 kg
Aeolian sediment trap	5 kg
Rock sample holders	30 kg
	157 kg

Camper Payload

Drill (20 m) 250 kg
GC-MS (2) 75 kg
Optical microscope $\quad 15 \mathrm{~kg}$
APXS 5 kg
X-ray fluorescence $\quad 15 \mathrm{~kg}$
Amino acid, chirality analyzer 11 kg
Raman spectrometer 8 kg
Infrared spectrometer 8 kg
Solubility/wet lab 20 kg
Sample packaging/G/v. Box 150 kg
Computers 15 kg
Cameras 10 kg
Rock saw, grinder, sieves 10 kg
Metabolic analyzer 15 kg
Protein, DNA $\quad \begin{array}{r}25 \mathrm{~kg} \\ \hline 632 \mathrm{~kg}\end{array}$

Human Activities Module

Inputs	Outputs	In Modules	Out Modules
Number of Crew	Total Volume	Design Variables	Power
Excursion Duration	Lvng Space Height	Payload	Structure
Sci. Payload Vol	Length		Chassis
Sci. Payload Mass	Radius		Thermal
Num EVAs	Center to Floor		
	Floor Chord		
	Airlock Surf Area		
	Driving Power		
	Peak Power		
	Science Power		
	Night Power		
	Head Generated		
	Total Mass		
	Water Consump.		

Human Activities Module

- Moon \& Mars Modifications
- Designed for these environments
- Only variations are input parameters, specifically number of crew and duration of excursion
- Earth Modifications
- Replace Airlock with kitchen

Human Activities Module

- Basis
- number of crew on excursion
- duration of excursion in days
- volume required to conduct science
- mass of science tools required
- number of EVAs per excursion
- For Mars mobility, there seems to be a "gap" in performance between architectures using campers, and architectures using pressurized rovers
- Given constant speed and range, and given a certain DRM-1 configuration, there is an optimum number of days on traverse
- Sensitivity analysis will be performed on the influence of range and speed (both driving and walking)

Original Modeling Approach (03/13)

Vehicle parameters

Final Modeling Approach (Today)

IITIT

Validation and Extensibility

- Where possible, model elements validated against Apollo LRV parameters and similar PSV models
- Some elements, such as wheel physics and motor characteristics, based directly on Apollo LRV data
- Current integrated design version implemented with aggregated/averaged parameters for speed, simplicity; could be extended via exhaustive lookup tables
- Mars extensibility: expect
- more benign terrain slopes and obstacles in most areas
- possibly worse soil interaction
- power increase due to gravity

Results: Sample Collection on DRM-1

At the end of a DRM-1 excursion...

30% probability of running out of sample mass capacity

CDF of Sample Volume Capacity Remaining on UPV upon Return to Base for DRM1

Always have at least 77% sample volume capacity available

