16.89J / ESD.352J Space Systems Engineering Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Preliminary Design Review May 13, 2002

16.89 Class List

 Students Mirna Daouk **Jason Derleth** Kevin Duda **Bobak Ferdowsi Deborah Howell Geoff Huntington George Leussis Stephen Long Christopher Roberts** Nirav Shah Tim Spaulding **Dave Stagney** Ludovic Talon

<u>Faculty</u> Dr. Daniel Hastings Dr. Joyce Warmkessel Dr. Hugh McManus

 <u>Customers</u> Kevin Ray (AFRL) Dr. John Ballenthin (AFRL) The Aerospace Corp.

Class Mission Statements

• The purpose of 16.89 is to actively explore the concept of Systems Engineering

• Team members work collaboratively using a newly developed, structured design process

Process is as important as results!

Value Proposition

• Students:

- Learn about space systems design
- Gain experience through the design of a space system architecture and satellite
- Present AFRL with an architecture analysis and preliminary design

• Professors:

- Guide the students through the process
- Utilize experience to help students learn
- Present AFRL with an architecture analysis and preliminary design

• AFRL:

- Provide a real system for students to gain experience
- Receive an architectural analysis and preliminary design

Traditional Design Methodology

- Identify Need
- Talk to the Customer
- Research
- Brainstorm Potential Solutions
- Choose Point Design
- Build
- Test
- Sell

16.89 Class Process

6

Drag and Reentry Prediction - Mir

10% error along the orbital path translates to nearly 6500 km on the ground!

> Map of <u>Mir Debris Footprint</u> removed due to copyright restrictions.

Image from Aerospace Corporation

16.89 Space Systems Design Review

Atmospheric Drag

- Satellites traveling through the atmosphere encounter drag forces due to neutral particles
- Density and composition of particles varies with :
 - altitude
 - geographic location
 - solar radiation
 - geomagnetic activity

Prediction of drag effects on spacecraft traveling through the atmosphere is highly uncertain

Drag Modeling and Prediction

- During certain solar cycles or magnetic storms, atmospheric density can increase as much as 100% (shown in red at right)
- These disturbances cause thousands of objects to alter their predicted orbits.
 These objects must be "found" again by tracking stations

Mission Description

- The Air Force Research Lab's Space Vehicles Branch needs data to develop satellite drag and neutral density models
- The models will enable:
 - Precision orbit predictions for high interest satellites
 - Re-entry prediction
 - Positioning of AF surveillance satellites
 - Collision avoidance
 - Cataloging space debris orbits

Mission Payload

 The data will be obtained by flying the customer's instrument suite through the upper atmosphere

ADS MEASUREMENTS

- Satellite Drag
- Neutral Density
- Neutral Winds
- Neutral Composition
- Ion Composition
- Temperature

XTOS Scope

Practical Constraints

- Fly AFRL-provided instrument package
- Instruments Ram-Facing within 0.1 degrees
- Knowledge of altitude accurate to within 250 meters
- Launched from a U.S vehicle / launch site
- Communications through TDRSS or AFSCN

User Preferences

- Data samples taken over wide range of latitudes
- Data collected over different solar and earth weather cycles
 - (e.g. solar max/min, night/day, etc...)
- Distribution of data points (across latitudes, time cycles)
- Mission lifetime greater than 6 months

What is an attribute?

 Quantifiable variable capable of measuring how well a <u>user-defined</u> objective is met

• Set of attributes must be:

• Complete

Non-redundant

Operational

Minimal

Decomposable

- Independent of cost
- "Rule of 7" Human mind limited to roughly 7 simultaneous concepts

Attributes

What is Utility?

- Mathematical measure of "goodness"—lifted from Economics
- Ranges from 0 1: Ordered Metric scale
- Involved in the interview process and "multiattribute utility theory"
- Allows us to expand the possibilities for design and trade one attribute against another

Multi-Attribute Interview Software Tool (MIST)

Attributes framed by "scenarios"—meant to take each attribute in isolation

- MIST uses the "lottery equivalent probability" to create a utility curve
- User first rates each attribute individually, then balances each against the others

*MIST created by Satwik Seshasai

Data Life Span

Scenario

Utility Interview

A ground station has developed the technology to accurately extract pertinent data for the AFRL model. This ground station will significantly increase data life span as compared to current systems. However, this new ground station has uncertain long-term funding. Your design team has studied the issue. They indicate that the new technology will give you a ## chance of getting a data life span of 11 years or a 1-## chance of getting 0.5 years. The current technology will give you a 50% chance of getting a XX data life span or 0.5 years.

Definition

Elapsed time between the first and last data points of the entire program measured in years.

Which option do you prefer: A, B or are you indifferent?

Converting Attributes to Utility Curves

- Different curve for each attribute
- Combination of attribute values produces overall utility

 Sometimes users do not show a linear preference over an attribute

May 13, 2002

Abstracting and Calculating Utility

• Propagated over entire orbit to get utility of orbit \overline{U}

Time step = 1 minute

Attribute Weighting Factors

Depicts the relative importance of each attribute to the user

Resolution of ±0.025

Design Vector Overview

- Independent design variables that have a significant impact on attributes (design knobs)
- Design vector excludes model constants
- Design vector provides a means to consider multitudes of architectures
- Geometric growth of combinations limits size, scope

Design Vector

Variable:	First Order Effect:
Orbital Parameters:	
 Apogee altitude (200 to 2000 km) 	Lifetime, Altitude
•Perigee altitude (150 to 350 km)	Lifetime, Altitude
 Orbit inclination (0 to 90 degrees) 	Lifetime, Altitude
	Latitude Range
	Time at Equator
Physical Spacecraft Parameters:	
•Antenna gain (low/high)	Latency
•Comm Architechture (TDRSS/AFSCN)	Latency
 Propulsion type (Hall / Chemical) 	Lifetime
 Power type (fuel / solar) 	Lifetime
•Total ΔV capability (200 to 1000 m/s)	Lifetime

Multi-Attribute Utility Process

Stage 1: Calculate Attributes

- 1. Determine mission scenario and satellites used
- 2. Divide mission scenario into "phases", where a new phase denotes a change in attribute values.
- 3. Calculate the specific attribute values from the satellites involved in each phase

Multi-Attribute Utility Process

Stage 2: Utility Function

- 1. Calculate Multi-Attribute Utility Value (MAUV) for each phase (see below)
- 2. Average MAUV using a time weighted average of the phases

All Architectures

- Single satellite 9944 architectures
- Two satellites launched in series 20000 arch
- Two satellites launched in parallel 20544 arch

Scenario 1: Single Satellite

• Single satellite – 9944 architectures

Utility vs. Cost with Altitude

Zoom in on black box Perigee

Apogee

Apogee is the main driver, perigee is secondary

Utility vs. Lifetime With ΔV

ΔV is secondary driver

16.89 Space Systems Design Review

Scenario 1: Single Satellite

• Example architecture choice

Summary of Key Cost and Utility Drivers

- 1. Apogee altitude lifetime driver
- 2. Perigee altitude lifetime driver
- 3. ΔV lifetime driver

- Power drives cost
- Thruster choice drives cost
- Dry mass drives cost

MATE Accomplishments

- Ascertained mission parameters
- Explored customer preferences
- Translated attributes into utility functions
- Defined tradespace
- Developed simulation code
- Evaluated thousands of architectures
- Identified optimal architectures

MATE Process Evaluation

- Focus on customer desires and not point solution
- Improved insights into design tradeoffs
 Some counterintuitive findings
- Ability to expand a single-point attribute into a utility
 - Taking one data point and integrating to find altitude utility

MATE Process Evaluation

 Modeling constraints prevent full exploration of the tradespace

 Clear understanding and facilitation are keys to a successful implementation of the MATE process

• Overview

- A process allowing subsystems to trade design parameters in a formal setting
 - Provides real-time feedback into the effect of those trades on:
 - Other subsystems
 - The overall utility of the mission

- Facilitates detailed analysis of the tradespace

- Faster than traditional processes

Human interaction

- All engineers operate within the same environment both physically and technically
 - Human interaction key to process
 - Design sessions "scripted" and controlled by one person
 - Many eyes on final product
- Experts in each area design key trades which directly affect their subsystem
 - Examine all major spacecraft subsystems
 - "Father knows best"

- Spacecraft subsystems modules
 - Design and programmatic level
 - ICEMaker software tool
 - Interdependent Microsoft Excel Workbooks
 - Common server
 - Matlab integration allows for link to utility trade in first half of class
 - Design convergence
 - Subsystem tradable parameters
 - Trade trees

- Mapping a converged design to utility
 - Multi-step process
 - Design to an architecture with an *a priori* utility value
 - Subsystem trades
 - Propagate traded parameters through worksheets
 - Design Convergence
 - Re-calculate utility value

ICE Setup

Mission

• The "primary" subsystem

- Contains key design variables
 - Orbit parameters
 - Total delta V for the mission

• Major components:

- Orbit determination
 - Includes maneuvers for insertion and deorbit
- Launch vehicle selection
 - From database of small/medium US launch vehicles
- Lifetime calculation
- Delta V budget

• Payload

- 3 Payload components
 - Satellite Electrostatic Triaxial Accelerometer (SETA)
 - Absolute Density Mass Spectrometer (ADMS)
 - Composition and Density Sensor (CADS)
- Mass: 20.5 kg
- Power: 48 W

Payload & Thermal

- Thermal
 - Took in temp. constraints
 - Used a spherical model
 - Two possible surfaces
 - 1st surface = solar panels
 - 2nd surface chosen from list
 - 2nd chosen to ensure thermal balance in two extreme scenarios
 - Dynamic calc validated balance
 - Insulation mass calculated for fuel tanks, lines
 - Mass: 2.249 kg
 - Design quickly converged on passive control

Power and Pyrotechnic

- Calculates power requirements for all modes
- Selects / sizes solar arrays
- Selects / sizes batteries
- Estimates mass of power subsystem
- Power requirements quickly drove power subsystem to body-mounted high efficiency solar arrays

 Less contingency

Command Control And Data Management (CCDM)

- 3 on Board computers
 - 2 for redundancy
 - 1 for safe mode handling
- High speed bus
- (2) 20 Gbit recorders
- 2 Low gain antennae
 - Conical Log-Spiral
- 2 sets transceiver / ampilifier system (with all associated hardware)

Propulsion

- ADACS and station keeping thrusters integrated
 - Electric propulsion eliminated due to power
 - 5 N Monopropellant (Hydrazine) thrusters
 - Simple blowdown system
 - Proven, available
 - Cheap
- I_{sp} choice determines total mass of fuel for required Delta-V

• Structures

- Structural mass
 - Primary
 - Secondary
 - Miscellaneous
- Launch loads
 - Acoustic
 - Random shock and vibration
- Mechanism selection
 - Requirement / need
 - Power

Structures & ADACS

- ADACS
 - Disturbances
 - Aerodynamic (eliminated by the assumption of C.G. ahead of C. of pressure)
 - Gravity gradient
 - Solar pressure
 - Pointing requirements from Payload and Com: 0.1 degree
 - Sensors
 - 1 GPS
 - 2 Horizon sensors

Configuration

- Arranges subsystem components
 - DrawCraft
 - SolidWorks
- Generates weight distribution, physical characteristics
- Parameters can be changed dynamically
- Human-in-the-loop required
- Sensors are ram-facing
- Center of gravity is forward of half-chord

Cost

• 2 Models

- SMAD CER
- SSCM (small sat. CER)
- Compared to Aerospace
 Corp's model for Small
 Sats
 - Same order of magnitude
 - 20 ~ 30% less than SMAD

Reliability

- Uses Markov Modeling to calculate reliability at mission lifetime
- Four possible states: full functionality, instrument
 2 or 3 fails, instruments
 2 and 3 fail, system
 failure
- Fidelity suffered from lack of knowledge of true Mean Times between Failures

MATE-CON Chair

- X-TOS is first use of MATE-CON Chair
- Purpose
 - Represents the customer via his/her expressed preferences (utility curves)
 - Sets goals and guides concurrent design process to maximized value for customer
- Features
 - Excel interface to concurrent engineering suite
 - MATLAB back-end for attribute and utility computations
 - MATLAB can be used to generate additional design roadmaps

Baseline X-TOS Design

- Est. Cost: \$71.7 M
- Utility*: 0.705
- Wet Mass: 449.6 kg
- Dry Mass: 188.9 kg
- Lifetime: 0.534 years
- Orbit: 185 km circular
- LV: Minotaur

* Denotes "Original" User Utility

Dry Mass Breakdown Chart

Wet Mass Breakdown Chart

SSCM Breakdown Chart

Configuration

Uncertainty and sensitivity analysis

Preference Uncertainty

Rearrangement of architectures in *different* tradespaces

Model Uncertainty

Variation in same space tradespace

Changing User Preferences (I)

- After reviewing MATE results, user expressed revised preferences
- Increased importance of Lifespan
- Slight decrease in importance of Latency

Changing User Preferences (II) Original Revised

 A change in user preferences may move architectures away from or on to the pareto optimal front

Changing User Preferences (III)

 New preferences lead to changes in objectives for preliminary detailed design

	Mass (wet) [kg]	Pwr (avg) [W]	∆V [m/s]	Apogee [km]	Perigee [km]	Life [yrs]	Utility (Orig)	Utility (Rev)	Life Cost [\$M]
Original Base			1000	250	200	0.75	0.66		
ICE Result	449.6	164	1250	185	185	0.53	0.70	0.61	71.74
Revised Base			1000	350	350	9.8		0.70	
Current ICE	324.3	164	1000	300	300	2.20	0.59	0.55	75.01
Parametric Uncertainty Sources

Sensitivity to Satellite Density

- Magenta has greater sensitivity to $\rho_{s/c}$ than Red or Green
- Red reaches the maximum life of 11 years and no longer benefits from increase in $\rho_{s/c}$ (initially Red has greater slope)
- Green's utility does not depend upon life as much as Magenta

Sensitivity to AR and CD

• Same trend as $\rho_{s/c}$

- Lifetime decreases as CD increase
 - Note the non-linear relationship
 - Arises from non-linear utility function for lifetime

Sensitivity to atmospheric density: Variation caused by the solar cycle

- Note that base case was solar max; Solar cycle state assumed constant throughout life
- Solar cycle has greatest impact on Green
 - Green has lower orbit than Red or Magenta
- At solar min and mean, Magenta has higher utility than Red
 - Density is low enough that Magenta can take advantage of its lower orbit

16.89 Space Systems Design Review

Sensitivity to Atmospheric Density: Uncertainty in density models

- At solar min Green surpasses both Magenta and Red; while at solar max Green quite low
- The purpose of this mission is to determine the density

 This is a key unknown that has a large impact on
 architecture selection

Sensitivity to Atmospheric Density: Dynamically change orbit

- Density is a key driver of utility
- Its value is uncertain
 - Uncertainty of launch date leads to uncertainty of location in solar cycle
 - Current atmospheric model have large errors

Design spacecraft to have enough fuel and thrust to dynamically change its orbit in response to current atmospheric conditions as mission progresses

Final X-TOS Design

- Est. Cost: \$75.0 M
- Utility**: 0.556
- Wet Mass: 324.3 kg
- Dry Mass: 205.5 kg
- Lifetime: 2.204 years
- Orbit: 300 km circular
- LV: Minotaur

** Denotes "Revised" User Utility

Requirements

- Provide a basis on which to design and test a spacecraft system
 - Lay out specific traits which the system must exhibit
- MATE-CON requirements derived differently than traditional systems
 - MATE-CON trades design vector and attributes to achieve highest utility mission
 - Map design vector and attributes to actual values used for requirements
 - The mission will be in circular low earth polar orbit. The apogee and perigee will be at 300 Km altitude.

MATE-CON Accomplishments

- Stakeholder preferences captured using MAU
- Thousands of architectures traded based on design vector and mission scenario
- An architecture and a preliminary design meeting user and customer preferences identified
- Feedback from user incorporated quickly
- Robust, modular, reusable code developed

Completed process for architecture and preliminary Design selection and assessment in 3 months!

Design Insights

- Utility plays a significant role
 - Initial utilities show that S/C design does not matter
 - Orbit is the largest driver
 - Revised utilities show that S/C does matter

'Flying Bomb'

 Large amounts of fuel can bring down uncertainty and increase robustness

• Can modify orbit dynamically

- Can possibly gain significant utility from re-entry

Design Insights (II)

- Atmospheric density has greatest uncertainty
 We are designing for an unknown environment
 - Need flexibility
- Drag is an enormous driver
 MATE-CON reveals unintuitive finding

MATE-CON Insights (I)

• Communication is key!

- Iterate with user/customer
- Establish contact with user/customer early in the process
- Facilitate communication within the team
 - Work in the same room!
 - Ensure shared mental model of process, software architecture and information flow
 - Manage coupling and interaction between subsystems

MATE-CON is an inherently human-centered process!

MATE-CON Insights (II)

- Availability of past projects facilitates learning, but can be dangerous if used without critical judgment
 - Model reuse can be inefficient or even wrong when the underlying assumptions are different!
- Agility is essential when working under time pressure and in an evolving environment
 - True for both people and process!
 - Example: changes in utility curve
- The level of fidelity should be consistent across the different modules
 - Not always the case that high fidelity is better

Future Opportunities/ Recommendations

- Assess effect of code reuse on process efficiency
- Increase team-team and team-customer communication in early stages of process
- Improve execution sequencing in ICE
- Facilitate detection of "bugs" in subsystem interactions
- Account for uncertainty
 - Launch opportunity & policy
- Include improved risk assessment
 - Recent work in Portfolio theory

Back-up Slides

16.89 Class Process

16.89 Process

MATE Process Flow

Define the Mission	Formulate Tradespace	Architecture Selection
1. Understand	1. Create Utility	1. Find Utilities /
the Mission	Curves	Analyze
 Create a list of	2. Create Design	Architectures
"Attributes"	Vector	2. Examine Utility
 Interview the	3. Create	vs. Lifecycle
Customer	Simulation	Cost Plot
	Software	3. Select Architecture

16.89 Process Tools

Systems Engineering Tools

- MATE-CON
 - Multi-Attribute Tradespace Exploration with Concurrent Design
- Matlab, STK (Satellite Tool Kit)
- ICE
 - Integrated, Collaborative, Model Based Design

What is MATE-CON?

- A formalized method to explore a design tradespace using model-based simulation
 - Incorporates preferences into decision criteria
 - Based in theory from economics and operations research
 - Multi-Attribute Utility Analysis (MAUA), Cost-Benefit Analysis

 A communication tool to facilitate transfer of wants and needs between designers and decision-makers

MATE

MATE Process

- Quantify customer's preferences in terms of Attributes and Utility functions
- Parametrically model satellite designs using Design Vector
- Simulate various mission scenarios
- Output *thousands* of possible architectures on Utility vs. Cost scale
- Analyze "Pareto-optimal" designs with customer
- Proceed to detail design of selected architecture(s)
- NEED PICTURES ABOVE EACH POINT??

Design Vector

- The Design Vector is composed of fundamental, independent variables that define an architecture tradespace
 - Focuses on variables that have significant impact on attributes
 - Geometric growth of design space motivates a curtailed list of design variables

Obtaining User Preferences

- 1. Define attributes
- 2. Define applicable attribute ranges
- 3. Compose utility questionnaire (context)
- 4. Conduct utility interview with Customer/User
- 5. Find utility for each attribute $U(X_i)$, and relative "weight" k_i

Interview Process

- New Method
- Avoid Certainty Equivalents to Avoid "Certainty Effect"
- Consider a "Lottery Equivalent"
 - Rather than Comparing a Lottery with a Certainty
 - Reference to a Lottery is Not a Certainty

 Vary "p_e" until indifference between two lotteries. This is the Lottery Equivalence

Measuring Utility

- Psychometric considerations
 - Nature of interview
 - Context
 - Scale of response
 - Method obtained (bracketing)
 - Consistency and replicability (computer programs)
- Step-by-Step Procedure
 - Defining the Attribute X
 - Setting context
 - Assessment
 - Interpretation
 - Numerical approximation

Diversity in Latitude Utility Curve

This attribute evaluates user preference for achieving a diversity in latitudes while under 1000 km, ranging from 0 to 180 degrees.

Time Spent in Equatorial Region Utility Curve

This attribute evaluates user preference for time spent in the equatorial region, defined as \pm 20 degrees from the equator.

Latency Utility Curve (Science Mission)

This attribute evaluates user preference for s/c latency in terms of a science mission, where latency is defined as the time between satellite data dumps.

Latency Utility Curve (Tech Demo Mission)

This attribute evaluates user preference for s/c latency in terms of a tech demo mission, where latency is defined as the time between satellite data dumps.

Data Life Span Utility Curve

This attribute evaluates user preference for the life span of all the data entering the model, where the life span is the time between the first and last data sample

Quality Function Development

• Description:

 A matrix to capture the influence a particular design variable has on the system attributes

- Expedites correlation of variables with attributes
- Enables ranking of design variables
- Enables reduction of design vector dimensionality

Quality Function Development (QFD)

		Range	0.5 - 11	150 - 1000	0 - 180	0 - 24	1 - 120		0 - 200 M\$	
		Units	Years	ж	Degrees	Hours (per day)	Hours		USD (2002)	
		Attributes	Data Life Span (Per Satellite)	Sample Altitude	Diversity of Latitudes contained in the Data Set	Time Spent in Equatorial Region	Latency	Total	Cost	TOTAL WITH COST
			<u></u>	\sim	\sim	4	10		Q	
		· · · · · · · · · · · · · · · · · · ·				`				
Variables	Units	Constraints					47			
Variables Perigee Altitude	Units m	Constraints 150 < hp < 350	9	9	0	0	3	21	9	30
Variables Perigee Altitude Apogee Altitude	Units m m	Constraints 150 < hp < 350 150 < ha < 1500	9	9	0	0	3	21 27	9 9	30 36
Variables Perigee Altitude Apogee Altitude Inclination	Units m m Degrees	Constraints 150 < hp < 350 150 < ha < 1500 0 < i < 90	9 9 0	9 9 9 0	0	0 6 9	3 3 3	21 27 21	9 9 6	30 36 27
Variables Perigee Altitude Apogee Altitude Inclination delta-V	Units m m Degrees m/s	Constraints 150 < hp < 350 150 < ha < 1500 0 < i < 90 0 < mass < 500	9 9 0 9	9 9 0 0	0 0 9 0	0 6 9 0	3 3 3 0	21 27 21 9	9 9 6 9	30 36 27 27
Variables Perigee Altitude Apogee Altitude Inclination delta-V Comm System Type	Units m m Degrees m/s -	Constraints 150 < hp < 350 150 < ha < 1500 0 < i < 90 0 < mass < 500 AFSCN or TDRS	9 9 0 9 0	9 9 0 0	0 0 9 0 0	0 6 9 0	3 3 3 0 9	21 27 21 9 9	9 9 6 9 3	30 36 27 27 12
Variables Perigee Altitude Apogee Altitude Inclination delta-V Comm System Type Propulsion Type	Units m m Degrees m/s - -	Constraints 150 < hp < 350 150 < ha < 1500 0 < i < 90 0 < mass < 500 AFSCN or TDRS Chemical or Hall	9 9 0 9 0	9 9 0 0 0	0 0 9 0 0	0 6 9 0 0	3 3 3 0 9 0	21 27 21 9 9	9 9 6 9 3 3	30 36 27 27 12 12
Variables Perigee Altitude Apogee Altitude Inclination delta-V Comm System Type Propulsion Type Power System Type	Units m Degrees m/s - - -	Constraints $150 < hp < 350$ $150 < ha < 1500$ $0 < i < 90$ $0 < mass < 500$ AFSCN or TDRS Chemical or Hall Solar or Fuel Ce	9 9 0 9 0 6 6	9 9 0 0 0 0	0 0 9 0 0 0 0	0 6 9 0 0 0	3 3 3 0 9 0 0	21 27 21 9 9 6 12	9 9 6 9 3 6 6	30 36 27 27 12 12 18

N-Squared Diagram

• Description:

 A square matrix that captures the informational flow among system elements

 Assists the simulation interface management and integration
N-Squared Diagram

				Cost	Mission	Calculate	Cost		
	Orbit	Spacecraft	Launch	(TFU)	Scenarios	Attributes	(Lifecycle)	Utility	Outputs
Orbit									
Spacecraft	Х								
Launch	Х	Х							
Cost									
(TFU)		Х	Х						
Mission									
Scenarios	Х	Х		Х					
Calculate									
Attributes	Х	Х			Х				
Cost									
(Lifecycle)		Х		Х	Х				
Utility						Х			
Outputs	Х	Х	Х	Х	Х	Х	Х	Х	

Information Flow

Orbits Database

- Plot shows an interesting region at low apogees and perigees
- Provides insights on how to better utilize database in the Mission Scenario module

Sub Modules

- Payload
 -AFRL instruments
- Structures
- Thermal
- Power (SC or fuel cell)
- Propulsion (chemical or Hall)
- ADACS (0.1^o pointing)
- Communication
 -3 dB Link Margin

Spacecraft Module

<u>Outputs</u>

- Total system mass
- Dimensions
- Volume
- Lines of code
- Data Latency

Decide on Final Architecture

Lifetime

Define the Mission May 13, 2002

16.89 Space Systems Design Review

Explore Tradespace

111

Detailed Designs

Payload

 All constant values as given in AFRL presentation. Based on using their instruments

<u>Structures</u>

 Assumes standard mass and power ratios for primary and secondary structures, cabling and mechanisms

<u>Thermal</u>

 Assumes standard mass and power ratios for thermal subsystem
 May 13, 2002

<u>Power</u>

- Total power needed is calculated by summing power requirements of all other systems.
- Two options : Fuel Cells or Solar Arrays

Propulsion

- This module only sizes the propulsion hardware
- Two options: Chemical (I_{sp} 350) or Hall (I_{sp} 1500)

Spacecraft Module

 The Spacecraft Module runs all the sub-modules and uses their output to compile mass, fuel, volume, dimension and lifetime estimates for the spacecraft as well as software and TFU costs.

•Note: The power estimate was already calculated in the power module.

 The module outputs three lifetime estimates: 1) assuming fuel only used for station keeping, 2) assuming station keeping and de-orbit and 3) assuming orbital insertion (from a circular perigee orbit), de-orbit and station keeping

Spacecraft Module

Mass:

- •Dry mass
- Propulsion mass
- Mass breakdown (individual subsystem masses)
- Total system mass
- Volume
 - Cylinder diameter
 - •Cylinder side
 - •Total Volume

Spacecraft Module

- The spacecraft module estimates total amount of software needed, amount of storage space needed onboard, processing hardware needed and
- The module outputs a data latency value which is the longest length of time possible between receiving data.
- TFU cost is estimated using SMAD model

Orbits & Spacecraft

<u>Orbits</u>

- Varying: apogee, perigee, inclination
- Outputs include:
 - Orbital period
 - Minimum and maximum latitude encountered
 - Dynamic pressure coefficient
 - Vector of altitudes with respect to time

<u>Spacecraft</u>

- The spacecraft will be delivered to it's final orbit by the launch vehicle
- Spacecraft is a 1:2 cylinder (Drag calculations & S/C dimensions)
- Coefficient of Drag=1.7

Cost Module

Description

- Includes spacecraft, operations, launch, and program level costs
- •Uses CERs for spacecraft/program level
- Uses NASA's Operations Cost Model
- Incorporates 95% learning curve
- Discounts costs at a 1.9% rate

Key Assumptions

- •Assumes small satellites (20-400 kg)
- Costs in FY2000, inflated to FY2002
- •Assumes payment for S/C is made on year of launch (for discount)
- Annual operations cost is yearly constant for one S/C, another constant for 2 parallel S/C (before discounting)

Scenarios

Sample Altitude:

- Hypothesize a new ground station
- Ground station will significantly increase data life span as compared to current systems
- Uncertain long-term funding
 - You have a 45% chance of getting 11 years (best) and
 - 55% chance of getting .5 years (worst)
 OR
 - 50% chance of getting 2 years (best) and
 - 50% chance of getting 0.5 years (worst)

Possible Results for STEP 1 mission

Tech Demo vs. Science Mission

Low Gain Omni-directional Antenna

High Gain Actuated Antenna 🔍

Cost Drivers: Dry mass

Cost Drivers: Power Source

Cost Drivers: Thruster Type

Power and Pyrotechnic

- Calculates average and peak power requirements for all modes
- Selects and sizes solar arrays
 - Based on EOL average load and battery charging
 - Type of solar cell (database)
 - Solar array configuration
 - Mass, area, and dimensions of arrays

- Selects and sizes secondary/primary batteries
 - Secondary based on eclipse average load
 - Primary based on launch / insertion requirements
 - Battery couple type
 - DOD %, cycle life, etc...
 - Mass, volume, and dimensions of batteries
 - Optional redundancy
- Estimates mass of power regulation and control based on power output.

Launch Module

Description

- •Selects a Launch Vehicle based on the following
 - Minimum Cost
 - Spacecraft Total Mass
 - Spacecraft Dimensions
 - Perigee Altitude
 - Orbital Inclination

Key Assumptions

- •Must be launched on a US vehicle
- •Scalable spacecraft
 - •Dimensions extracted from assumed densities
- •One spacecraft per launch vehicle

Database:Sample SATDB Entry

data_error_flag	0		payload_mass	20.5	
bad_launch_flag	0		dry_mass	196.0718	
id	1000		prop_mass	8.9422	
inclination	1.5708		total_mass	205.014	
alt_perigee	200000		latency	2.12E+04	
alt_apogee	200000		lifetime	0.2726	
comm_arch	0		lifetime_raw	0.2726	
total_delta_v	700		volume	2.5226	
prop_type	0		diameter	1.171	
power_type	1		length	2.3421	
ant_gain	1		max_avg_power	486.7966	
period	5.31E+03		max_peak_power	486.7966	
time_eq	19020		tfu_cost	2.14E+07	
min_lat	-1.545		lv_name	'Minotaur'	
max_lat	1.562		lv_cost	12500000	
delta_v	48.4051		lv_site	Vandenberg or Kodiak'	
alt_vector	89x1 double]		arch_id	28	
bus_mass	175.5718				

Some values are directly from the design vector

Other values are derived from the design vector using the orbits, spacecraft, and launch modules

SMAD Cost Breakdown Chart

Credits

Presentation Document Bobak Ferdowsi

• Presenters

- Mirna Daouk
- Geoff Huntington
- George Leussis
- Kevin Duda
- Nirav Shah