16.89J / ESD.352J Space Systems Engineering Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology ATA-01-1003 – Lunar Telescope Facility IDAC3 Results Presentation to the CxAWG

CONSTELLATION

To:

Deliver value to the astronomy community *and* add value to the proposed lunar exploration program

By:

Leveraging the lunar exploration architecture and enabling unique or better astronomical observations

Using:

An astronomical observatory located in cislunar space

Image of a lunar observatory, removed due to copyright restrictions

- Professors Ed Crawley and Olivier de Weck
- Dr. Massimo Stiavelli, Professors Jackie Hewitt and Jeffrey Hoffman, Dr. Tupper Hyde, Dr. Gary Mosier, Sarah Shull, Mark Baldesarra, and Thomas Coffee
- MIT graduate research team: Mark Avnet, Gautier Brunet, Justin Colson, Phillip Cunio, Tamer Elkholy, Bryan Gardner, Takuto Ishimatsu, Richard Jones, Jim Keller, Zahra Khan, Ryan Odegard, Jeff Pasqual, Jaime Ramirez, Timothy Sutherland, Chris Tracy, Chris Williams

Approach

Methods Used:

- Stakeholder analysis
- Concept enumeration and downselection
 - Multiple parallel studies and rigorous methodologies
 - Done in the context of existing and proposed telescope designs
- Detailed concept design
 - Lunar and free-space options were considered

Tools and Models Used:

- LIRA integrated telescope modeling tool
 - In-house design (similar to ICEMaker)
 - Excel-based
- Pugh rankings
- Morphological matrices

Significant deviations from the original intent of the baselined TDS

• Two telescope designs were carried to completion, instead of one

Results Summary

Stakeholder Analysis Results

- Stakeholder value-delivery network model
- Assessment of most important loop in the network

Concept Generation and Downselection Results

- Two detailed telescope designs
- LIRA (Lunar Interferometric Radio Array)
- LIMIT (Lunar Infrared Modular Interferometric Telescope)

Detailed Concept Design Results

- Lunar surface uniquely enables capabilities
- Potential human deployment and servicing schemes

Stakeholder and Value Flow Identification and Ranking

Importance	Major Stakeholders	Type of	Flow		а	b	С	d	е	f	q	h	i	i
5	Scientists NASA Congress	Educate Media U.S. Pu Scientis	ors blic/Humanity sts	a b c d	a H	K b K	С	K K K d	S	S	H	S	D,O	H \$,D
4	Executive Telescope Operator	Congre Executi Contrad	ess ive ctors	e f g			\$,S S		e \$	\$ f	g	S S	н	S \$,H
3	Contractors U.S. People	International Partners Telescope Operator NASA		h i j			Н	D,H	S \$,S	S P	H,I	h <mark>S,I</mark>	i	S \$ j
2	Media Educators International Partners	Кезу \$ Р І О D	Money Policy Directive Political Support Instruments, Hardware Observing Time Data	•			Key 5 4 3 2	Esse Very Impo Som	ential /Impo ortant iewha	ortan t t Im po	rtant			
1		H K	Human Resources Knowledge, Images, P	icture <u>s</u>			1 0	Help Irrel	oful evant					

• Knowledge, Images, and Pictures

- Scientists → Educators: ~450 papers/year (HST)
- Scientists → Media: ~2800 news references (HST)
- Media → Public: ~2800 news references (HST)
- Media → Educators: ~2800 news references (HST)
- Scientists \rightarrow Public: >150 science museum kiosks (HST)
- Money
 - Public \rightarrow Congress: \$492 billion/year (2007 non-defense discretionary budget)
 - Congress → NASA: \$16.354 billion/year (2007 NASA budget)
 - NASA → Scientists: \$5.330 billion/year (2007 NASA science budget)
 - NASA → Contractors: \$132 million/instrument (HST, in 2007 USD)

Stakeholder Flow Network Model

Most Important Loop in the Network

Recreating the Hubble Loop

- Successfully brought together science and human spaceflight communities
- Unprecedented scientific output over 4,000 published papers
- Intense public interest over 2,800 news references
- Strong support from Congress
- 5th human servicing mission in September 2008 will extend Hubble's lifetime through 2013

 Recreating this loop requires generating knowledge, images, and photos for public consumption in key areas of scientific interest, such as the Epoch of Reionization or Planet and Star Formation

LIRA Telescope Facility

Lunar Interferometric Radio Array

- 3440 dipole antennas separated into 215 clusters (16 per cluster)
- Clusters distributed in 62 km diameter array
- Data transmitted to central processing unit
- Central unit processes raw data in real time (14Gbps)
- Refined data transmitted via relay system to lunar limb for transmission to Earth
- Laser communication systems used throughout to avoid radio pollution of Moon's far side

LIRA RF Attenuation on Lunar Far Side

• Epoch of Reionization

- The birth of the first stars and galaxies as the universe emerges from the cosmic "dark ages"
- Can be observed by the turnoff of redshifted 21-cm radio emission from neutral hydrogen as the universe becomes ionized
- Instrument design will be driven by sensitivity/FOV to observe the EOR

Extrasolar Planets

- Emission from charged particle interactions with planet's magnetospheres
- Solar Science and Particle Acceleration
 - Low frequency radio emission from particle acceleration sites in the inner heliosphere

Serendipitous science

Preliminary location chosen at 5° past limb

- Numerical simulation at 50 kHz
- Actual measurements required for future work
- Operates at radio frequencies below those possible from Earth

Sensitivity
$$= \frac{2k_B T_{sys}}{A \eta N^2} \cdot \frac{1}{\sqrt{\Delta v \cdot \tau}}$$
$$A = \text{Antenna Collecting Area} \sim \lambda^2$$
$$\eta = \text{Antenna Efficiency}$$
$$N = \text{Number of Dipoles}$$
$$\Delta v = \text{Bandwidth (instantaneous)}$$
$$\tau = \text{Integration Time}$$

$$T_{sys} =$$
System Temperature $= T_{Sky} + T_{Inst}$

LIRA Sensitivity and Resolution Comparisons

- The sensitivity for LIRA is idealized (frequency independent, uniform efficiency)
- No current high resolution systems go below 30 MHz

Optimized Characteristics

- Frequency Range: 10 to 130 MHz
- Number of Dipoles: 3440
- Array Diameter: 62 km

Optimized Capabilities

- EOR Resolution: 15 arcminutes
- Sensitivity: 2.0 mJy at 10 MHz, 0.3 mJy at 130 MHz

Bandwidth: 32 kHz Number of Clusters: 215

Max Resolution: 7.7 arcsec (at 130 MHz) FOV Diameter: > 25 degrees at all freqs

LIRA Cost Estimation

Subsystem Mass and Cost Estimation							
	Mass (kg)	Component Cost (M\$)					
Electronics	58.2	28.2					
Communications	826.7	6.5					
Power	4546.1	1.7					
Structures and Mechanisms	7149.5	71.5					
Deployment	1007.3	256.6					
Integration and Other	3396.9	91.1					
Software and Ground Segment		270.7					
Subsystem Total	16,984.5	726.2					

Transportation Cost									
	Cost/Ares V (M\$/Launch)	Number of Launches Required	Cost (M\$)						
Transportation	1260	1	1260						
Total			1,260						

Total Cost – \$1.987 Billion

LIMIT Telescope Facility

Lunar Infrared Modular Interferometric Telescope

• Science Goals

- Galaxy and Star Formation
- Brown Dwarfs
- Active Galactic Nuclei
- Detection and Formation of Planets
- NIR Weak Lensing Survey

Image removed due to copyright restrictions. From:

Bussey, D. B. J., et al. "Illumination conditions at the lunar south pole." *2001 IEEE Aerospace Conference Proceedings*, 2001, vol.3 p. 1187-1190

Aperture Imaging Locations

[2] Miller, D.W., "Adaptive Reconnaissance Golay-3 Optical Satellite", http://ocw.mit.edu

- NIR/FIR Golay-9 array with 0.85 m elements
 - Telescope elements based on Spitzer design
 - Operationally tested instruments and optics
- Modular design is flexible and upgradeable to Golay-12 or Golay-15
- Located on Shackleton Crater floor
- Benefits from the lunar surface
 - Avoids the atmospheric opacity in the infrared
 - Thermally stable shadowed environment
 - Surface enables precisely fixed interferometeric baselines
 - Serviceable by astronauts

LIMIT Collecting Instrument and Structure

Spitzer-Derived IR Telescope

- 85 cm diameter primary, f/12, 50 kg
- Solid beryllium piece, aluminum coated mirrors
- Ritchey-Chrétien design

Outer Shell

- 1 meter diameter, 2 meters tall
- Aluminum honeycomb and yoke structure, base is 23.5 kg

Beam Collimator to Direct Light

- Similar to VLT-I
- Developed via research on high-efficiency IR fiber optics

Range : 3.5 – 180μm

- I-IRAC: 256x256 Imaging InSb and Si:As. 3.5, 4.5, 6.3, 8, 10μm
- I-IRS: 128x128 Imaging and spectroscopy Si:As/Sb.
- I-MIPS: 128x128 Si:Sb, Ge:Ga detectors.

Power

- Solar panel array on the southern rim of Shackleton Crater, mounted on a sun tracking base
- 2.75 kW beginning of life, 2.25 kW end of life (10 yrs)
- Staggered shadows gives effective 90% sunlight
- Modular expandable base of batteries located near panels
- 10 km power cable to telescope array

LIMIT Concept Comparison

LIMIT Cost Estimation

Subsystem Mass and Cost Estimation								
			Mass (kg)	Compo	onent Cost (M\$)			
	Telescopes	(9)	1027	45.1				
	External Opt	429		5.8				
	Structures and Mechanis	ms	212		2.9			
	Active Thermal Cont	rol	40		0.1			
	Electron	10	4.7					
	Communicatio	13	0.2					
	Pov	1789	0.3					
	Integration and Ot	her	880	14.8				
Subsys	stem Research & Developme	ent		977.8				
	Ground Segment Developm	ent		270.7				
	Total		4,399 (kg)	1322 (M\$)				
Transportation C	Transportation Cost							
	Cost/Ares V (M\$/Launch)	Νι	umber of Launches Req	Cost (M\$)				
Transportation	1260	~0.25 308						
Total	Total 308 (N							

Total Cost – \$1.631 Billion

LIRA Deployment

Scope: moving clusters and communication relays to desired positions

Element Offloading

- Ramp and winch on lander
- Elements packaged for simple attachment to offloading system

Additional Functionality of System

- Outfit lunar orbiting stage with simple radio communication system Provide contact with Earth before laser system is operational

Deploy with long-range unpressurized rover *****

- High-capacity rechargeable batteries interface with array power system
- Robotic manipulator (ramp) for loading and unloading of cargo
- Interface with communication relays: gimbaled laser receiver
- Radio antennas for communicating with telescope components and Earth during deployment
- Range ~165 km, mass ~1000 kg, payload 480 kg

Opportunity for leveraging manned program: human-mediated deployment

- Astronauts can guide deployment rovers via laser link or short-range radio relay
- Allows for monitoring by IVA crew

62km

LIMIT Deployment

• Human Lunar Outpost at South Pole

Rovers (JPL's ATHLETE)

- Payload capacity of 450kg/vehicle
- Move at 10km/h over Apollo-like terrain
- Deployment will take 3 astronauts and 2 ATHLETES 2-3 weeks

LIMIT Servicing

Key Findings

 Key Stakeholder value-delivery loop: Congress-NASA-Public/Media-Congress

• Flows are knowledge/images/photos, money, and political support

Lunar Interferometric Radio Array (LIRA)

- 62 km diameter baseline, low frequency radio telescope containing 3440 dipole antennas
- Concept specifically enabled by radio quiet on far side of the Moon

Lunar Infrared Modular Interferometric Telescope (LIMIT)

- NIR/FIR Golay-9 array with 0.85 m elements, using operationally testing instruments and optics
- Located in Shackleton Crater, allows for precise, stable baseline; serviceability; and modularity

Impacts

- Requirement(s) impacted (pending RICWG review)
 - Include requirement number, any TBD / TBR numbers, text
 - Identify TBDs and TBRs recommended for closure or change (from / to language)
 - New requirements recommended
- Issue(s) impacted by analysis
 - Issue number and description of issue
 - Description of impact to issue (resolved?)
 - New issues identified include description and resolution plan if possible

Risk(s) impacted by analysis

- Risk number and description
- Description of impact or changes to risk (recommend closure?)
- New risks identified to be entered into IRMA

Impacts to SDR

• A description of any impacts to the Cx SDR that are a result of the analysis

Other impacts

 A description of any impacts to Technical Data, Ops Concepts, etc. that involve other teams and may change their work or procedures

Potential impacts to IDAC4, PDR, future work identified

 Candidate analysis tasks identified to be performed by your or any organization in IDAC4 as an outcome from IDAC3 efforts

Recommendations

Recommendations

- Dedicate one full Ares V cargo launch (LIRA) or partial Ares V cargo or resupply launch (LIMIT) to deployment of a lunar telescope facility
- Allow for possible EVA servicing/deployment, or IVA remote deployment by lunar habitat crews
- Begin preparing public relations campaign to ready Hubble-type loop on stakeholder value-delivery network

Thank You!

Backup

LIMIT System Components

• System components to be launched from Earth

	Quantity	Mass of each [kg]	Area [m ²]	Volume of each [m ³]	Location					
Telescopes										
Telescope +										
Insulation +	9	138	-	2.00	С					
Base structure										
Fiber optic cabling	1	7.6	-	0.25	С					
Beam Combiner										
Beam combining unit	1	300	-	3.75	С					
Thermal cryocooler	1	40	-	0.25	С					
		Power								
Solar panels	1	27	2.25	-	В					
Batteries	1	354	-	0.0052	С					
Support equipment	1	27	-	-	В					
Power cabling	1	1184	-	1.00	B-C					
Power distribution box	2	50	-	0.25	B,C					
Electronics & Communication										
Computer	1	9.7	-	0.01	С					
Radio transmitter	1	3.6	-	0.28	С					

TOTAL SYSTEM	4 400		
(plus integration)	4,400	_	ſ

Launch Cost Estimate

Deployment Time

Assumptions

- 3 astronauts and 2 ATHLETEs
- 6-8 hours of EVA at one time (day)
 - \rightarrow 4-6 hrs for operations + 2 hrs for round trip

ATHLETE: 10km/h

 \rightarrow 2 hours for round trip

Deployment Time Estimate

	Quantity	Operation Time of each [hrs]	Total Operation Time [hrs]	EVA # or Day [days]
Telescope	9	4	36	9
Fiber optic cabling	1	4	4	1
Beam combining unit	1	2	2	0.5
Thermal cryocooler	1	2	2	0.5
Solar panels	1	4	4	1
Batteries	1	4	4	1
Support equipment	1	2	2	0.5
Power cabling	1	4	4	1
Power distribution box	2	2	4	1
Computer	1	2	2	0.5
Radio transmitter	1	4	4	1
TOTAL EVA			68	17

Thermal Control System Design

250 W

Cooling of collector units (IR mirrors)

Passively cooled to 9 K with adequate shielding

Cooling of combiner units (IR detector)

- Actively cooled to 5 K with cryocooler
 - Several architectures under consideration
 - Target specifications Mass:
 - · Performance:
- 40 ka
- Input power:

Heat rejection system

Radiation panels and/or loop heat pipes Advantages of lunar environment

- Permanent darkness of crater interior on south pole
- Little variation in temperatures

Requirements

- Highly sensitive IR detectors need cooling to < 5 K
- Cold telescope/optics required to limit thermal emission
- Target operating temperatures
 - 9 K - IR mirrors (collector units):
 - IR detector (combiner unit): 5 K

External heat sources

- Cosmic microwave background
- Geothermal heat flow
- Reradiation from illuminated regions (crater rim)

Expected temperatures

- CMB: 4 K
- Lunar blackbody radiation: 24 K
- Crater surface with contributions from rim reradiation: 40 - 80 K

- Compare longest wavelengths for other space IR telescopes to mirror temperatures
 - Using Wien's Displacement Law,

fit mirror temperature to curve based on farthest IR 20 mW capacity @ 6 K wavelength

 $\lambda_{max}T_{BB} = 2898$

Passive Thermal Control of Individual IR Telescopes

Beam Combining Device

Figure 4.27 The final layout of the ARGOS optical train (only one aperture shown) 1-subaperture, 2- collimating lens, 3-FSM/ODL actuator, 4-pyramidal mirror, 5-beam combiner, 6-CCD

Future Work

• Further design trades and optimization studies

- RF: Noise attenuation, array configuration, laser relays
- IR: Fiber optics, beam combining, thermal, dust, array configuration
- Data collection on conditions on the lunar far side (via manned program or LRO)
- Develop a launch schedule that would fit into NASA's planned program
- Develop technology to deploy and operate LIRA telescope (deployment rover, laser communications)

Concept Space Matrix

JWST

- Lunar Interferometric Radio Array (LIRA)
- Lunar Infrared Modular Interferometric Telescope (LIMIT)

Total Possible Concepts After Matrix Enumeration: 6048

Moon Dust Issues

Mechanical

- Dust varies in size and shape and can infiltrate and contaminate mechanisms
- Dust is electrostatically charged and is hard to remove

Optical

- Scattering, diffraction
 - Dust on mirrors disrupt source signal from reaching detectors
- Emission
 - Detector infiltration serious problem
 - Thermal issues of dust on optics → found not to be a problem

Time, s

Photo courtesy of NASA

Dust Mitigation Concepts

Sealing/containment

- Sensitive instruments need tightly sealed designs and redundant layers of protection
- Landing site built with containment wall to limit dust dispersion
- Moving mechanisms
 - Loose, flexible covers with well sealed interfaces, allowing rotation/movement while keeping dust out
- Mirror covers
 - Cover during launches/landings since kicked up dust is distributed over Moon's surface many tens of kms

Regolith sintering

- For serviceability by humans or robots, sinter lunar surface with microwaves reduces amount of lofted dust
- "Glass road"

Electrostatic cleaning based on sequence of ac pulses

- Testing conducted by Carlos I. Calle (lead scientist at NASA's Electrostatics and Surface Physics Laboratory at Kennedy Space Center) worked well
- Looking to obtain real Moon samples
- Polyimide mirror coating to reduce sticking
 - Low surface energy reduces attraction
 - Harder, more resistant than Teflon
- Ultrasonic vibration to move dust off optics
 - Zenith-pointing through Cassegrain
 - Horizon-pointing off edge of mirror

Image of vehicle chassis, removed due to copyright restrictions

Image of HTP flexible seal, removed due to copyright restrictions

Moon Dust Photos courtesy of NASA

Electronics

- LIRA Requirements
 - 14 Gbps Input
 - 839 Mbps Output
- Design Results
 - 46 Data Input Cards Required
 - 6 Equipment Enclosures
 - Total Weight: 58.2 kg

Image of Single Equipment Enclosure, removed due to copyright restrictions

- LIMIT Requirements
 - 1 Gbps input
 - 500 Kbps output
- Design results
 - 8 data input cards required
 - 1 equipment enclosure
 - Total weight: 9.7 kg
 - Chips throughput: 1.575Gbps

- Assumptions
 - Equipment Properties from Broad Reach Engineering Website
 - \$4.7M per Enclosure
- Relationships
 - Input increases with number of antennas, clusters and cluster data rate
 - Output data rate increases with size of image and number of frequencies

Science per Cost

- Developed a figure of merit combining a "discovery efficiency" metric with angular resolution
- represents the time it takes for a survey of half of the sky to a target sensitivity over the entire frequency band
- represents the resolution at which the EOR can be observed
- Logarithm and square root used to balance the components and reflect the fact that incremental increases in the capability become less important as the instrument becomes more capable

t_{survey} 0.004 0.0035 EOR 0.0025 0.002 FOM/Cost MS 10.0035-0.00 0.003-0.003 $FOM = Constant \times Log$ 0.0025.0.0 0 002-0 002 10 0015-0 00 FOV (deg) 9 12 15 18 21 24 27 30 33 10.001-0.001 0 0005-0 00 0-0 0005

Cost vs EOR Resolution

IR Telescope Evolution

Architectures presented at previous review

- NIR/FIR interferometer with 1 m and 3 m elements
- FIR segmented 14m telescope

Hybrid architecture considered after review

- Central Fizeau array with long baseline outriggers
- Cost of hybrid design would almost double
- Observing time split between imaging and interferometry

Final concept selected

NIR/FIR Golay-9 Fizeau array with 0.85 m elements

 Assume an instrument noise temperature of 100K and calculate the sky temperature as:

$$T_{Sky} \cong 100 \left(\frac{\nu}{200 \text{MHz}}\right)^{-2.8}$$

- Assume a 4σ detection level in 2000 hours and solve for N
- Determine FOV by size of cluster and max resolution by size of array as:

• Where D is the cluster size and array size respectively

$$\theta \sim \frac{\lambda}{D}$$

RF Power Systems and Structures

Each Cluster

- 12-W solar-panel & batteries systems
- Continuous operation with 70% sunlight
- 19 kg & \$7,000 power system

Central Processing Unit

- 230-W solar-panel & batteries systems
- Continuous operation with 70% sunlight
- 400 kg & \$145,000 power system

Major Considerations

- Substituting RTG reduces mass by 380 kg but increases total cost including launch by \$13M
- Significant batteries required (4.2 ton) for 210-hr night
- Locating telescope closer to equator significantly increases battery mass for a solar powered system and tends toward using an RTG for the central unit
- Dipoles deploy From 1.6 x 1.6 meter square palette
- Final Size: 4.8 x 4.8 meters
- Footprint levels dipoles on lunar surface

Requirements

- 215 clusters
- 16 dipoles per cluster
- 0.75 m dipole length
- 62 km array diameter
- 24 square meter cluster

Design Results

- \$330,000 per cluster (not including power and communication)
- 33 kg per cluster

Assumptions

- 0.1 kg/m dipole mass
- 1 kg/m^2 structure mass
- \$10,000 per kg

Communication System - Radio

Relay Concept - Radio

 Chain of Robust, Cheap Relays Link Telescope and Moon to Earth Transmitter (Set Risk, Try for Cost, Accept Time)

Strengths of Stakeholder Value Loops

Value Loops		Scie	nce C) bject	ives	
(Expected strength of each loop - "% strength")	Α	В	С	D	Е	F
$Public \rightarrow Congress \rightarrow NASA \rightarrow Scientists \rightarrow Public$	15	11	22	14	13	3
Public → Congress → NASA → Scientists → Media → Public	7	7	18	11	13	2
NASA \rightarrow Contractors \rightarrow Public \rightarrow NASA	28	37	56	44	43	15
NASA → International Partners → Scientists → NASA	47	28	38	28	33	15
$NASA \rightarrow Scientists \rightarrow Public \rightarrow NASA$	19	15	35	22	22	5
Congress/Executive → NASA → Telescope Operator → Scientists → Public → NASA	15	11	22	14	13	3
AVERAGE	22	18	32	22	23	7
NORMALIZED AVERAGE	0.68	0.58	1.00	0.70	0.71	0.22

- A. Epoch of Reionization (EoR)
- B. Active Galactic Nuclei (AGN)
- C. Extrasolar Planets (XSP)
- D. Galaxy and Star Formation (GSF)
- E. Dark Energy (DE)
- F. Weak Gravitational Lensing (WGL)

Averaged and Normalized Utility Scores

Stakeholder Utility	Science Objective								
(0 = no utility; 1 = maximum utility)	А	В	С	D	Е	F			
Congress & Executive	0.78	0.77	0.62	0.61	0.59	0.53			
NASA	0.70	0.70	0.60	0.55	0.65	0.45			
Scientists	0.75	0.80	0.45	0.42	0.50	0.45			
Media	0.47	0.60	0.80	0.80	1.0	0.60			
Educators	0.50	0.70	1.0	1.0	0.75	0.40			
General Public	0.40	0.53	0.93	0.80	0.67	0.33			
International Partners	1.0	1.0	1.0	1.0	1.0	1.0			
Contractors	1.0	1.0	1.0	1.0	1.0	1.0			
Telescope Operator	1.0	1.0	1.0	1.0	1.0	1.0			

- A. Epoch of Reionization (EoR)
- B. Active Galactic Nuclei (AGN)
- C. Extrasolar Planets (XSP)
- D. Galaxy and Star Formation (GSF)
- E. Dark Energy (DE)
- F. Weak Gravitational Lensing (WGL)

Ranking of Science Objectives

Science Objective

- A. Epoch of Reionization (EoR)
- B. Active Galactic Nuclei (AGN) E. Dark Energy (DE)
- C. Extrasolar Planets (XSP)
- D. Galaxy and Star Formation (GSF)

 - F. Weak Gravitational Lensing (WGL)

Communication Relays

