
Term Project

Final Presentation


• Visual aids available on-campus 
– Computer projection 
– Document camera 
– Camera 

• Visual aids available off-campus 
– Camera 
– OR -- Send me your slides electronically and 

I’ll project them from my laptop 
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Term Project

Grading


• Term project is 30% of course grade 
• Written report is 75% of term project 

– Due on last Lecture day. 
– 10% penalty per day late 

• Final presentation is 25% of term project 
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Term Project

Final Presentation Schedule


• Tom Hoag, “Designing a Robust Business” 
•	 Chip Clampitt, “The Use of Orthogonal Arrays to Optimize Nonlinear 

Functions Iteratively” 
• Karl Hauenstein, “Robust Design of a Voltage Controlled Oscillator” 
•	 Boran, Goran, Pepin, Shashlo, Wickenheiser, “Robust System Design 

Application / Integration - Ford Motor Company” 
•	 Joe Distefano, “Application of Robust Design Techniques to a Paper 

Winding Simulation” 
• Garth Grover, “HPT Dovetail 2-D Form Robust Design” 
• Shelley Hayes, “Taguchi Method Meets Publish and Subscribe” 
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Term Project

Final Presentation Schedule, Cont.

•	 Wei Zhao, “Taguchi and Beyond - Methodologies for Experimental 

Designs” 
• J. Philip Perschbacher, “Robust Design of Blade Attachment Device” 
•	 Michelle Martuccio, “Allied Signal's Six Sigma Initiative: A Robust 

Design Case Study” 
• Steve Sides, Bob Slack, “Coating Technology for Jet Aircraft Engines” 
•	 Ebad Jahangir, “Robust Design and its Relationship with Axiomatic 

Design”. 
• Tom Courtney “Robust Thermal Inkjet Printhead Design” 
•	 David Markham, “Robustness Testing of a Film-Scanner Magnetic 

Module” 
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Robust Conceptual Design


Considering Variation 

Early in the Design Process
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Outline 

• Motivation 
• Tools and tricks -- TRIZ, etc. 
• A framework -- RCDM & wafer handling case 
• Case study -- VMA prehensor 
• Case study -- Adhesive application in LBPs 
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Quality in Product Development 

Quality efforts used to be 

focussed here


determined here! 

Concept 
Development 

System 
Design 

Detail 
Design 

Testing and 
Refinement 

Production 
Ramp-up 

But 80% 
of quality is 

Customer 
use 

Taguchi Methods
of parameter design 

Induce noise 

16.881 Source: Ulrich and Eppinger, “Product Design and Development” MIT




Concept Design:

The Window of Opportunity


Quality determined & 
costs committed 

Design flexibility 

Window of opportunity 
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Russell B. 
Ford and 
Philip Barkan16.881
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Concept versus Parameter Design


Concept Design 
• Begins with broad specs 
• Free wheeling, intuitive 
• One off experiments 
• Rough analysis 
• Requires insight 

Parameter Design

• Begins with system design 
• Bounded, systematic 
• Orthogonal arrays 
• Precise analysis 
•	 Can be implemented as a 

“black box” 

Source: Russell B. Ford and Philip Barkan 
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Biggest Roadblocks in Concept Design


• Poor problem formulation 
• Stopping with too few alternatives 
• Failure to search existing solutions 
• Missing entire categories of solutions 
• Inability to merge solutions 

16.881 Source: Ulrich and Eppinger, “Product Design and Development” MIT




Properties of a 

Good Problem Statement


• Solution neutral 
• Quantitative 
• Clear 
• Concise 
• Complete 
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Techniques for Concept Generation 
• Brainstorming 
• Analogy 
• Seek related and unrelated stimuli 
• Use appropriate media to convey & explore 

– Sketching / Foam / Lego 
• Circulate concepts & create galleries 
• Systematically classify & search 

16.881 Source: Ulrich and Eppinger, “Product Design and Development” MIT 



Theory of Inventive Problem 

Solving (TRIZ)


• Genrich Altshuller 
– Sought to identify patterns in the patent literature 

(1946) 
– "Creativity as an Exact Science" translated in 1988. 

• The basic concept 
– Define problems as contradictions 
– Compare them to solutions of a similar form 
– Provide a large database of physical phenomena 
– Anticipate trends in technical evolution 
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TRIZ Software 

•	 Ideation International 
(http://www.ideationtriz.com/) 

•	 Invention Machine (http://www.invention-
machine.com/) 
– Effects 
– Principles 
– Prediction 
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Tricks for 

Robust Concept Design


• Create lots of concepts with noise in mind 
• Build breadboards & experiment (quickly) 
• Don’t be afraid to revisit concept design stage 
•	 Eliminate dependence on non-robust physical 

effects & technologies 
•	 Design in non-linearities to exploit in 

parameter design 
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Robust Concept Design 

Methodology


•	 Russell B. Ford and Philip Barkan at 
Stanford 

• Four Stages 
– Definition of the robustness problem 
– Derivation of guiding principles 
– New concept synthesis 
– Concept evaluation and selection 

16.881 MIT




Wafer Handling Robot 
Rotating platform Gear pair 

Silicon Wafer 

Double Parallelogram Linkage 

Top View 

Process A 

Process B 

Process C 

Load 

Store 
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Stage 1

Definition of the Robustness Problem


• Identify robustness as a primary goal 
•	 Incorporate critical performance metrics 

into the problem definition 
• Target needed improvements in robustness 
• Quantify key robustness goals 

T
R = y 

6σ y 
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Stage 1

Rotating platform 

Silicon Wafer
Gear pair 

Double Parallelogram Linkage How will you 

Top View specify robustness? 

Side View MIT16.881 



Stage 2

Derivation of Guiding Principles


•	 Identify dominant error propagation 
mechanisms 

•	 Derive insight into the root causes of 
performance variation 

•	 Predict the effect of design parameters and 
error sources on performance variation 

• Single out limiting constraints 
• Substantiate the predicted behavior 
16.881 MIT




Stage 2

Rotating platform Gear pair 

Silicon Wafer

Double Parallelogram Linkage 

Top View


Side View 
16.881 

What are the root causes? 

What are the mechanisms of 
propagation? 

How would you predict 
effects? 

What are the constraints on 
the design? 

MIT




Stage 3

New Concept Synthesis


•	 Modify error propagation mechanisms to 
reduce or eliminate transmission 

• Eliminate or reduce error sources 
• Circumvent limiting constraints 
• Draw upon new technology 
• Add extra degrees of freedom as necessary 
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Stage 3

Rotating platform Gear pair 

Silicon Wafer

Double Parallelogram Linkage 

Top View


16.881 

How can you modify 
propagation? 

Can you circumvent 
constraints? 

Are there new technologies 
to employ? 

Develop 3 other concepts.

Side View


MIT




Stage 4

Concept Evaluation and Selection


•	 Reconcile robustness requirements with al 
other critical performance specifications 

• Select the best concept from all alternatives 
•	 Predict the effect of design parameters and 

error sources on performance variation 
•	 Decide whether further improvement is 

required 
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References -- Conceptual 

Robustness


•	 Ford, Russell B., and Philip Barkan “Beyond Parameter 
Design -- A Methodology Addressing Product Robustness 
at the Concept Formation Stage”, DE-Vol. 81, Design for 
Manufacturability, ASME, 1995. 

•	 Andersson, Peder, “A Semi-Analytic Approach to Robust 
Design in the Conceptual Design Phase”, Research in 
Engineering Design, Research in Engineering Design, vol. 
8, pp. 229-239. 

•	 Stoll, Henry W., “Strategies for Robust Product Design,” 
Journal of Applied Manufacturing Systems, Winter, 1994, 
pp. 3-8. 
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Case Study

VMA Prehensor


• Dan Frey and Larry Carlson 
•	 The authors wish to thank the NCMRR 

(grant no. 1-RO1-HD30101-01) for its 
financial support 

•	 The contributions of Bob Radocy as both 
design consultant and field evaluator are 
gratefully acknowledged 
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Body Powered Prosthetic 

Prehension


•	 Amputee wears a harness to which a cable is 
attached 

•	 Cable routed through a housing, down the arm, to 
a prehensor 

•	 Body motions create cable excursion & apply 
force 
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The TRS Grip 

• A “voluntary closing” prehensor 
– Lightly spring loaded to open position 
– User applies cable force 

• Often users want to change body position 

Cable 
tension 

while grasping objects 
•	 How will variations in cable excursion 

affect grip force? 
16.881 MIT 



Testing Apparatus 
• Lead screw applies force / displacement 
• Load cell measures applied tension 
• LVTD measures applied displacement 
• Resulting grip force measured 

MIT 



Testing the Grip

G

rip
 F

or
ce

 (l
bs

) 
G

rip
 F
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ce

 (l
bs

)


Cable Tension (lbs)

Amputees can generate 

2” of excursion 
and 40 lbs tension 

How would you design the Grip? 
What form will the plots take? 
What determines robustness

Cable Excursion (inches) to body motions? 
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Pre-existing Approaches


APRL Hook 

Northwestern U. 

“Synergetic Prehensor”


16.881 

Allows the user to lock the prehensor

- First stroke applies force and locks

- Second, harder stoke unlocks

- Safety compromised!

- Poor reliability


Myo-electrically operated hand 

- Sizing and gripping are distinct 

phases of grasp

- Both require minimal 

mechanical energy

- Longer battery life MIT




Variable Mechanical Advantage 


• Idea -- break up the 
task into sizing and 
gripping 

• How can one use this 
to improve 

Cable Tension (lbs) 

robustness to body 
position error?
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VMA Design Concepts 

Gear Based DesignLinkage Based Design

(Carlson)
 (Frey / Carlson)


Simplified Linkage 
Based Design 
(Frey / Carlson) 
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Operation of the VMA Prehensor


MIT16.881 



•	 Over-running clutch 
used to hold force 

•	 Performance very 
sensitive to shape of 
rollers 

•	 Flat spots due to wear 
rendered design 
unreliable 

MIT 

Holding Assist Concept 
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VMA Prehensor

First Prototype


• 2D profile allowed quick CNC prototyping 
• $200 in machining costs 
• Aluminum components 
• Stock bearings 
• ~$100 materials 

VMA prototype with 
face plate removed MIT16.881 



Robustness to Error in Excursion


• Excursion saved in sizing 
•	 Employed later to lower sensitivity to excursion 

by more than a factor of three 
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MIT16.881

Robustness to Environment

• Users subject prehensors to varying conditions
• Such conditions adversely affected performance

VMA I PERFORMANCE
UNDER VARYING ENVIRONMENTAL CONDITIONS
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Ratchet Teeth


•	 Broached fine 
teeth into mating 
surfaces 

•	 Friction no longer 
determines 
performance 
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VMA Prehensor

Second Generation Prototype


•	 More agressive increase in mechanical 
advantage 

•	 Holding assist enhanced through 
mechanism design 
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VMA II PREHENSOR 
COMPARED TO VMA I & GRIP II 
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Results of Amputee Evaluation

VMA Prehensor


• Provides greater range of motion while 
maintaining grasp 

• Works reliably under wide range of 
environmental conditions 

• Shifts prematurely with compliant objects 
• “Free-wheel” switch convenient to use 

– Provides alternate mode of operation 
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References -- VMA Prehensor

•	 Frey, D. D. and L. E. Carlson, 1994, "A body powered prehensor with variable 

mechanical advantage," Prosthetics and Orthotics International, vol. 18, pp. 
118-123. 

•	 Carlson, L. E. and R. Heim (1989). "Holding assist for a voluntary-closing 
prosthetic prehensor," Issues in the Modeling and Control of Biomechanical 
Systems, American Society of Mechanical Engineers, DSC-Vol. 17:79-87. 

•	 Childress, D. S., and E. C. Grahn (1985). "Development of a powered 
prehensor". In 38th Annual Conference on Engineering in Medicine and 
Biology, p. 50. 

•	 Taylor, C.L. (1954). "The biomechanics of the normal and of the amputated 
upper extremity," Human Limbs and Their Substitutes, McGraw Hill, New 
York, pp. 169-221. 
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Case Study

Adhesive Application for Surface 

Mount of Large Body Packages


• Dan Frey and Stan Taketani 
•	 The authors wish to thank the Hughes 

Doctoral Fellowship program for its 
financial support. 
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Adhesive Application

Design Issues


• Adhesives are required to: 
– Support mechanical loads 
– Transfer heat to sink 

• Robustness problems Typical adhesive pattern 

– Epoxy thickens during application 
– Air sometimes “burps” 
– Air gap height not repeatible 
– LBPs 
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P-Diagram


Noise Factors 

Product / Process 

ResponseSignal Factor 

Control Factors


16.881 MIT




Compression of a Single, Long Bead 
F/L (lbs/in) Navier-Stokes 

highly viscous 
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Multiple Beads with Air Pockets
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Eliminating “Squeeze-Out”

Despite Viscosity Variation


•	 When beads touch one another, downward motion 
is arrested 

d 
dt touching 1 
h


=
 2
d
h
 n
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P
d
t
 nottouching 
x 

not touching 
touching 

• Design rules exploit this phenomena 
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Estimating Percent Coverage


∆h 
sparse 
coverage = 

h 
h h + ∆h 

sparse dense sparse 
coverage coverage coverage 

• Thinnest air gaps set component height 
• Wider air gaps are areas of sparse coverage 
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Adhesive Flow Model

Preliminary Verification


• Used dispense test data to estimate µ 
• Used µ, P, and V to calculate bead shape 

•	 Used force schedule to estimate final height 
and percent coverage 
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Postage Stamp and Tape


• Postage stamp protects the circuitry 
• Tape allows easier rework 
•	 BUT -- MCM to PWA gap cut from 13 mils to 7.5 

mils 
• Fα1/h3 -- over 400%more force req’d 

Force 

MCM Body 
Leads Leads 

PWA 
Adhesive Bead 

Pads 

Tape 

Pads 

Postage Stamp 
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Accomodating Equipment Limitations


• Robot can only apply 7 lbs seating force 
• Air pockets support substantial load (>50%) 

– Open air gaps (when practicable) 
• F ∝ 

1 - Switch to thinner beads
W3 
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Gaps in Adhesive Coverage 
•	 Model predicted existence of gaps in 

coverage under certain conditions 
• Experimentally observed later 

•	 Given gap location, they might not have 
been detected early enough 
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Dispense Problems

Due to PWA Waviness


Nozzle too close to PWA -- Nozzle too far above PWA --
flow partially blocked. Just right. bead breaking and dragging. 
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Dispense Parameter Selection 
Force 

h 

Force 

Plugging 

Dragging 

Gapping 

A < Amax ( Fmax , µ , airgap) 

Dragging 
2 Ah < − ∆h

Dnozzle 

Plugging 
h > ∆h + 

Dnozzle 

2 

Gapping 

A (1 − cosα ) 
sin 
2 

1 − α 
A 

2
> airgap + ∆h 
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Next Steps 
• Next off-campus session 
• Course evaluations 
• Term project presentations 
• Good luck! 
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