
Final Exam 

• Very good performance overall 
• Essays were particularly good 
• Mean - 88.5% 
• Standard deviation - 5.7% 
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Homework 

• HW#8 
– Mean = 96.1 
– Standard Deviation = 7.4 

• HW#9 
– Mean = 94.9 
– Standard Deviation = 5.5 
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The Remainder of the Course


• Primary mission -- Complete your term projects 
• Secondary mission -- Cover topics of interest 
• 70% of your grades are set (term project = 30%) 
• Class sessions (half new topics / half consultation) 

– Tolerance Design / Projects 
– Mahalanobis Taguchi System / Projects 
– Conceptual Robust Design / Projects 
– Final Project Presentations 
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Expectations on Final Project 

• Should represent ~30 hours of effort 
• Options 

– Full robust design effort 
– Planning phase only 
– Post mortem analysis of a previous effort 
– Study of an advanced topic in robust design 
– Other possibilities with permission 
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Grading of the Final Project 

• 75% Written report 
• 25% Oral presentation 
• Grading criteria include 

– Impact and significance of the results 
– Quality of the planning and analysis 
– Clarity of technical exposition 
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Tolerance Design


The Interface Between Design and 

Manufacture
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Outline 

• History of tolerances 
• Tolerancing standards 
• Tolerance analysis 
• Tolerance design 
• Taguchi’s approach 
• Case  study 
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History of Tolerances


• pre 1800 -- Craft production systems 
•	 1800 -- Invention of machine tools & the English 

System of manufacture 
•	 1850 -- Interchangeability of components & the 

American system of manufacture 

Jaikumar, Ramachandran. From Filing and Fitting to 
Flexible Manufacture, 1988. 
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Craft Production 
•	 Drawings communicated rough proportion 

and function 
•	 Drawings carried no specifications or 

dimensions 
•	 Production involved the master, the model, 

and calipers 
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The English System 
• Greater precision in machine tools 
• General purpose machines 

– Maudslay invents the slide rest 

• Accurate measuring instruments 
– Micrometers accurate to 0.001 inch 

• Engineering drawings 
– Monge “La Geometrie Descriptive” 
– Orthographic views and dimensioning 

• Parts made to fit to one another 
– Focus on perfection of fit 
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The American System


•	 Interchangeability required for field service 
of weapons 

• Focus on management of clearances 
• Go-no go gauges employed to ensure fit 
• Allowed parts to be 
made in large lots 

Go - no go gauges 
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Tolerances on Drawings 

• Binary acceptance criteria 
• Multiple quality characteristics 
• All criteria must be met (dominance) 

16.881 
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Basic Tolerancing Principles

ref. ANSI Y14.5M


• Each dimension must have a tolerance 
•	 Dimensions of size, form, and location must 

be complete 
•	 No more dimensions than necessary shall be 

given 
•	 Dimensions should not be subject to more 

than one interpretation 
• Do not specify manufacturing method 
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Tolerance Analysis

Probabilistic Approaches


• Worst case stack up 
• Root sum of squares 
• Numerical integration 
• Monte Carlo simulation 
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Tolerance Analysis Problem 
1.0”± 0.05” 

• Extruded aluminum bar stock 

• Cut two pieces 
• Stacked end to end 1.0”± 0.1” 

•	 What is the probability that the stack will fit in this 
bracket? 

MIT
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Specifying Tolerances to 

Minimize Required Precision


• How should this part be dimensioned? 
•	 How is optimal dimensioning determined 

by function? 
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Tolerance Analysis

Geometric / Kinematic Issues


• Will these parts mate? 
• Solution approaches 

– Kinematic modeling 
– Assembly simulation 
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Variation Systems Analysis

You supply geometry You define distributions 

Software provides: 
Variance 
Defect rate 
Pareto diagram MIT 



Computer Aided Tolerancing 
• Strengths 

– Requires few probabilistic assumptions 
– Can account for real assembly considerations 

• Tooling 
• Gravity 

– Integrated with many CAD environments 
• Major Pitfalls 

– Compliance of parts 
– Source of input data 
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Process Capability Indices 
p(q) 

U L− 

2 

L U L U q+ 

2 

−• Process Capability Index Cp ≡
(U L) / 2  

3σ 
U L+ µ − 

•	 Bias factor k ≡ 
2 

(U L) / 2− 

• Performance Index Cpk ≡ Cp (1 − k ) 
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Tolerance Cost Models 

p(q) 

Cost 

Machining cost 

Scrap cost 

qL UU L+ 

2 

U L− 

2 

Tolerance 
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Tolerance Cost Models

Multiple Processes


Cost 

Machining 
Grinding 

Lapping 

Tolerance
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Traditional Tolerance Design


•	 Select tolerances on components that 
optimize profitability 
– Tighter tolerances - higher costs of manufacture 
– Looser tolerances - higher scrap rates 

• Approaches 
– Linear programming 
– Discrete optimization 
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Taguchi Tolerance Design


•	 Use OAs in a noise experiment to determine 
the magnitude of tolerance factor effect 
– How many levels would you choose? 

•	 Use the quality loss function as a basis for 
the trade off between higher manufacturing 
costs and lower customer satisfaction 
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Tolerance Design Case Study


Who would you 
involve in the 
tolerance design 
study? 

Singh, K., R. Newton, and C. Zaas, “Tolerance Design 
on a Moveable Window System of an Automobile 
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Customer Requirements 

•	 Smooth and quiet operation under all 
weather conditions 

• Consistent closing and opening speeds 
• No wind noise or water leakage 
• Long life and high reliability 
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System P-Diagram
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Noise Factors & Levels 
• Why use three level noise factors? 
•	 Why is there a difference in spread of the levels 

between a three level and two level factor? 
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Noise Factor Effects on

Average Glass Velocity


• What is the significance of the range? 
• What is the significance of non-linearity? 
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Noise Factor Effects on

Stall Force


•	 How would you use this to make a Pareto 
diagram? 
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Window System Case Study

Conclusions


•	 Cross functional team included design, 
manufacture, reliability, and suppliers 

•	 Motor power and regulator efficiency 
identified as major contributors to variation 

•	 Computer simulation allowed redesign prior 
to prototyping 

•	 Product development cycle time and cost 
reduced 
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Next Steps 
• Next off-campus session 

– SDM Conference room 
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