Final Exam

- Very good performance overall
- Essays were particularly good
- Mean 88.5%
- Standard deviation 5.7%

Homework

MĽ

- HW#8
 - Mean = 96.1
 - Standard Deviation = 7.4
- HW#9
 - -Mean = 94.9
 - Standard Deviation = 5.5

The Remainder of the Course

- Primary mission -- Complete your term projects
- Secondary mission -- Cover topics of interest
- 70% of your grades are set (term project = 30%)
- Class sessions (half new topics / half consultation)
 - Tolerance Design / Projects
 - Mahalanobis Taguchi System / Projects
 - Conceptual Robust Design / Projects
 - Final Project Presentations

Expectations on Final Project

- Should represent ~30 hours of effort
- Options
 - Full robust design effort
 - Planning phase only
 - Post mortem analysis of a previous effort
 - Study of an advanced topic in robust design
 - Other possibilities with permission

Grading of the Final Project

- 75% Written report
- 25% Oral presentation
- Grading criteria include
 - Impact and significance of the results
 - Quality of the planning and analysis
 - Clarity of technical exposition

Tolerance Design

The Interface Between Design and Manufacture

	۹.	/SA - Anal	ysis		
LYSIS Destinato	REport				<mark>,</mark>
	Ses	sion: 96093	29-724524		
WZATCENT / DISTANC	e - Water Pl	JMP TO ALT	CENTERS		000 somples
Nomin Ma Standard Deviati	al: 273.17 an: 273.20 on: 0.93	758 014 240 567 180	LDL	up.	
Lower Design Lìm Upper Design Lìm	ít: 271.17 ít: 275.17	758 758 120-			
C	Cp: 0.71 pk: 0.70	17 60)26 0	-3S		+3S
Distributian:	Tested No	rm 269.50	000 272.0	000 274.5000	277.0000
	Sample	Est		Sample	* Est
% < Low Limit	1.1000	1.5289	Low	269.6337	270.3914
% > High Limit	1.8000	1.7521	High	276.6604	276.0114
% Out of Spec	2.9000	3.2810	Range	7.0267	5.6200
95% C.I. for %	Out of Spec	1.8599 to	3.9401	* Est Range ;	99.7300%
SC: Select a diff	erent report	t type)			

Outline

- History of tolerances
- Tolerancing standards
- Tolerance analysis
- Tolerance design
- Taguchi's approach
- Case study

History of Tolerances

- pre 1800 -- Craft production systems
- 1800 -- Invention of machine tools & the English System of manufacture
- 1850 -- Interchangeability of components & the American system of manufacture

Jaikumar, Ramachandran. *From Filing and Fitting to Flexible Manufacture,* 1988.

Craft Production

- Drawings communicated rough proportion and function
- Drawings carried no specifications or dimensions
- Production involved the master, the model, and calipers

The English System

- Greater precision in machine tools
- General purpose machines
 - Maudslay invents the slide rest
- Accurate measuring instrument
 - Micrometers accurate to 0.001 incl
- Engineering drawings
 - Monge "La Geometrie Descriptive"
 - Orthographic views and dimensioning
- Parts made to fit to one another
 - Focus on perfection of fit

The American System

- Interchangeability required for field service of weapons
- Focus on management of clearances
- Go-no go gauges employed to ensure fit
- Allowed parts to be made in large lots

Tolerances on Drawings

- Binary acceptance criteria
- Multiple quality characteristics
- *All* criteria must be met (dominance)

Basic Tolerancing Principles ref. ANSI Y14.5M

- Each dimension must have a tolerance
- Dimensions of size, form, and location must be complete
- No more dimensions than necessary shall be given
- Dimensions should not be subject to more than one interpretation
- Do not specify manufacturing method

Tolerance Analysis Probabilistic Approaches

- Worst case stack up
- Root sum of squares
- Numerical integration
- Monte Carlo simulation

Tolerance Analysis Problem

- Extruded aluminum bar stock
- Cut two pieces
- Stacked end to end

• What is the probability that the stack will fit in this bracket?

Specifying Tolerances to Minimize Required Precision

- How should this part be dimensioned?
- How is optimal dimensioning determined by function?

Tolerance Analysis Geometric / Kinematic Issues

- Will these parts mate?
- Solution approaches
 - Kinematic modeling
 - Assembly simulation

Variation Systems Analysis

You supply geometry

*********Pro/ENGINEER Assembly: ENG_F1******		
	-3D Rest -Verify -Reports -Dptions -Generate -Compile -Analyze -Export to	
VSA - Analysis		
VSA - Analysis WLYSIS Destinatn REport	UTITs	
VSA - Analysis WLYSIS Destinato REport Session: 960929-224524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS	Page 1 of 2	
VSA - Analysis WLYSIS Destinato REport Session: 960929-224524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median :273.1758 H HLM Variance :0.7531	Page 1 of 2 igh-Low-Median Study	
VSA - Analysis MLYSIS Destinato REport Session: 960929-224524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median :273.1758 H HLM Variance :0.7531 Tolerance	Page 1 of 2 igh-Low-Median Study Effect	
VSA - Analysis VALYSIS Destinato REport Session: 960929-224524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median :273.1758 H HLM Variance :0.7531 Tolerance PDIgg0 comp: block=f1 feat: p01FEAT=13 Position 1.0000/W1 [AHBIG]	Page 1 of 2 igh-Low-Median Study Effect 33.37%	
VSA - Analysis WLYSIS Destinato REport Session: 960929-224524 W2A=CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median: 273,1758 H HLM Variance: 0,7531 Tolerance PD1gg0 Comp: block=f1 feat: P01FEAT=13 Position 1.0000(M) [AUB[C] FLOAT012 alt=brk2=f1 - eng=f1 assemble op floated.	Page 1 of 2 igh-Low-Median Study Effect 33.37% 26.95%	
VSA - Analysis ALYSIS Destinate REport Session: 960929-224524 W2A=CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median: 273,1758 H HLM Variance: 0,7531 Tolerance PD1gg0 comp: block=f1 feat: P01FEAT=13 Position 1.0000(M) [A B C] FLOAT012 alt=brk2=f1 - eng=f1 assemble op floated. P01gg1 comp: block=f1 feat: P01FEAT=12 P01gg1 comp: P01FEAT=12 P01gg1 comp: P01FEAT=12 P01gg1 comp: P01FE	Page 1 of 2 igh-Low-Median Study Effect 33.37% 26.96% 23.63%	
VSA - Analysis ALYSIS Destinato REport Session: 960929-224524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median: 273,1758 H HLM Variance: 0,7531 Tolerance PD1gg0 comp: block-f1 feat: p0[FEA]=13 Position 1.0000(M) [A B C] FLOAT012 alt~brk2=f1 - eng=f1 aseamble op floated. P01gg1 comp: block=f1 feat: p0[FEA]=12 Position 1.0000(M) [A B C] P01GP4 comp: block=f1 feat: Composite Position 1.0000(M) [A B C]	Page 1 of 2 igh-Low-Median Study Effect 33.37% 26.95% 23.63% 4.24%	
VSA - Analysis ALYSIS Destination REport Session: 960929-724524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median: 273.1758 H HLM Variance: 0.7531 Tolerance PD1gg0 comp: block=f1 feat: P01FEAT=13 Position 1.0000(M) [A B C] FLOAT012 alt=brk2=f1 feat: P01FEAT=12 Position 1.0000(M) [A B C] P01g91 comp: block=f1 feat: P01FEAT=12 Position 1.0000(M) [A B C] P01GP4 comp: block=f1 feat: 1.0000(M) [A B C] FLOAT039 pump=asn=f1 - eng=f1 assemble op floated.	Page 1 of 2 igh-Low-Median Study Effect 33.37% 26.95% 23.83% 4.24% 1.72%	
VSA - Analysis ALYSIS Destination REport Session: 960929-724524 W2A-CENT / DISTANCE - WATER PUMP TO ALT CENTERS Nominal at Median: 273.1758 H HLM Variance: 0.7531 Tolerance PD1gg0 comp: block-f1 feat: P01FEAT-13 FLOATO12 altbrk2-f1 - ent; P01FEAT-12 P01g91 comp: block-f1 feat: P01FEAT-12 P01g91 comp: block-f1 feat: P01FEAT-12 P01g91 comp: block-f1 feat: P01FEAT-12 P01GP4 composite Positian: 1.0000(M) [A B C] FLOATO39 pump-ast-f1 - ent; f1 assemble op floated. FLOATO39 altbrk1-f1 - ent; f1 assemble op floated.	Page 1 of 2 igh-Low-Median Study Effect 33.37% 26.95% 23.63% 4.24% 1.72% 1.52%	

You define distributions

	VSA - Analysis	e e
ALYSIS: Destinato;	REport	UTIT
	Session: 960929-224524	
WZATCENT / DISTANC	E - WATER PUMP TO ALT CENTERS	1000 somples
Normi na Mea	l: 273.1758 n: 273.2014 240	
Standard Deviatio	n: 0.9367 180 LDL	
Lower Design Lìmi Upper Design Lìmi	t: 271.1758 t: 275.1758 120	
י נו	p: 0.7117 60 –35 k: 0.7026	+35
Distributian:	Tested Norm 269,5000 272.0	000 274.5000 277.0000
	Sample Est	Somple Est [*]
% < Low Limit	1.1000 1.5289 Low	269.6337 270.3914
% > High Limit	1.8000 1.7521 High	276.6604 276.0114
% Out of Spec	2.9000 3.2810 Range	7.0267 5.6200
95% C.I. for % [ut of Spec 1.8599 to 3.9401	* Est Range : 99.7300%
ESC: Select a diff	rent report type]	

Software provides: Variance Defect rate Pareto diagram

Computer Aided Tolerancing

- Strengths
 - Requires few probabilistic assumptions
 - Can account for real assembly considerations
 - Tooling
 - Gravity
 - Integrated with many CAD environments
- Major Pitfalls
 - Compliance of parts
 - Source of input data

Process Capability Indices

• Process Capability Index

$$C_p \equiv \frac{\left(U - L\right)/2}{3\sigma}$$

• Bias factor

$$k \equiv \frac{\left|\mu - \frac{U+L}{2}\right|}{\left(U-L\right)/2}$$

• Performance Index

$$C_{pk} \equiv C_p(1-k)$$

Tolerance Cost Models

Tolerance

Tolerance Cost Models Multiple Processes

MĽ

Traditional Tolerance Design

- Select tolerances on components that optimize profitability
 - Tighter tolerances higher costs of manufacture
 - Looser tolerances higher scrap rates
- Approaches
 - Linear programming
 - Discrete optimization

Taguchi Tolerance Design

- Use OAs in a noise experiment to determine the magnitude of tolerance factor effect

 How many levels would you choose?
- Use the quality loss function as a basis for the trade off between higher manufacturing costs and lower customer satisfaction

Tolerance Design Case Study

Who would you involve in the tolerance design study?

ΜΠ

Singh, K., R. Newton, and C. Zaas, "Tolerance Design on a Moveable Window System of an Automobile Door", ASI 3rd International Symposium, 1997.

Customer Requirements

- Smooth and quiet operation under all weather conditions
- Consistent closing and opening speeds
- No wind noise or water leakage
- Long life and high reliability

Glass Run

Regulator

Motor

Noise Factors & Levels

- Why use three level noise factors?
- Why is there a difference in spread of the levels between a three level and two level factor?

Tolerance Factors		Tolerance	Levels			
		Source	1	2	3	
A	Glass Off Form	Surrogate Process Capability Data	m–o	m+σ		
В	Belt Opening	Assembly Stackup	m−√(3/2)σ	m	m+√(3/2)σ	
С	Flange Angularity	Print Tolerance	m−√(3/2)σ	m	m+√(3/2)σ	
D	Belt W/S CLD	CAE Calculations	m−√(3/2)σ	m	m+√(3/2)σ	
E	Motor Power	Print Tolerance	m−√(3/2)σ	m	m+√(3/2)σ	
F	Regulator Efficiency	Supplier's Estimate	m−√(3/2)σ	m	m+√(3/2)σ	
G	Regulator Counter Balance Spring Rate	Print Tolerance	m−√(3/2)σ	m	m+√(3/2)σ	
Н	Glass Run W/S CLD	CAE Calculations	m−√(3/2)σ	m	m+√(3/2)σ	

Noise Factor Effects on Average Glass Velocity

- What is the significance of the range?
- What is the significance of non-linearity?

Noise Factor Effects on Stall Force

• How would you use this to make a Pareto diagram?

Window System Case Study Conclusions

- Cross functional team included design, manufacture, reliability, and suppliers
- Motor power and regulator efficiency identified as major contributors to variation
- Computer simulation allowed redesign prior to prototyping
- Product development cycle time and cost
 reduced

Next Steps

- Next off-campus session
 - SDM Conference room

References

- Evans, D. H., 1974, "Statistical Tolerancing: The State of the Art, Part 2. Methods of Estimating Moments," *Journal of Quality Technology*, vol. 7, no. 1, pp.1-12.
- Bjorke, O., 1978, *Computer Aided Tolerancing*, Tapir Publishers, Trondheim, Norway.
- Harry, Mikel J., and J. Ronald Lawson, 1992, *Six Sigma Producibility Analysis and Process Characterization*, Addison Wesley, Reading, MA.

References, Cont.

- ASME, 1983, *ANSI Y14.5M -- Dimensioning and Tolerancing*, Americain Society of Mechanical Engineering, New York.
- Craig, M., 1988, "Variation by Design," *Mechanical Engineering*, vol. 110, no. 11, pp. 52-54.
- Greenwood, W. H. and K. W. Chase, 1987, "A New Tolerance Analysis Method for Designers and Manufacturers," *ASME Journal of Engineering for Industry*, vol. 109, pp. 112-116.

References, Cont.

- Jaikumar, Ramachandran, 1988, *From Filing and Fitting to Flexible Manufacture*, working paper 88-045.
- Keeler, Stephen P., Alan K. Jones, and Harold A. Scott, 1994, "Tolerancing Methods and Software: A Status Report," Document No. BCSTECH-94-030, Boeing Computer Services, Seattle, WA.
- Lee, W. J., and T. C. Woo, 1989, "Optimum Selection of Discrete Tolerances," *ASME Journal* of Mechanisms, Transmissions, and Automation in Design, vol. 111, pp. 243-251.

References, Cont.

- Ostwald, P. F., and J. Huang, 1977, "A Method for Optimal Tolerance Selection," *ASME Journal of Engineering for Industry*, vol. 99, pp. 558-565.
- Whitney, D. E., O.L.Gilbert, and M., Jastrzebski, 1994, "Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies," *Research in Engineering Design*, vol. 6, pp. 191-210.

