Plan for the Session

- Quiz on Constructing Orthogonal Arrays (10 minutes)
- Complete some advanced topics on OAs
- Lecture on Computer Aided Robust Design
- Recitation on HW#5

How to Estimate Error variance in an L₁₈

- Consider Phadke pg. 89
- How would the two unassigned columns contribute to error variance?
- Remember L18(21x37)
 - Has 1+1*(2-1)+7*(3-1) = 16 DOF
 - But 18 rows
 - Therefore 2 DOF can be used to estimate the sum square due to error

Breakdown of Sum Squares

Session #11

Column Merging

- Can turn 2 two level factors into a 4 level factor
- Can turn 2 three level factors into a six level factor
- Need to strike out interaction column (account for the right number of DOF!)
- Example on an L₈

Column Merging in an L₈

- Eliminate the column which is confounded with interactions
- Create a new four-level column

	Control Factors							
Exp no.	A	В	C	D	E	F	G	η
1	1	1	1	1	1	1	1	
2	1	1	1	2	2	2	2	
3	1	2	2	1	1	2	2	
4	1	2	2	2	2	1	1	
5	2	1	2	1	2	1	2	
6	2	1	2	2	1	2	1	
7	2	2	1	1	2	2	1	
8	2	2	1	2	1	1	2	

Computer Aided Robust Design

Engineering Simulations

- Many engineering systems can be modeled accurately by computer simulations
 - Finite Element Analysis
 - Digital and analog circuit simulations
 - Computational Fluid Dynamics
- Do you use simulations in design & analysis?
- How accurate & reliable are your simulations?

Simulation & Design Optimization

• Formal mathematical form

minimize $y = f(\mathbf{x})$ subject to $h(\mathbf{x}) = 0$ $g(\mathbf{x}) \le 0$

minimize weight subject to height=23" max stress<0.8Y

Robust Design Optimization

• Vector of design variables **x**

- Control factors (discrete vs continuous)

• Objective function *f*(**x**)

- S/N ratio (noise must be induced)

- Constraints $h(\mathbf{x}), g(\mathbf{x})$
 - Not commonly employed
 - Sliding levels may be used to handle equality constraints in some cases

Noise Distributions

- Normal
 - Arises when many independent random variables are summed
- Uniform

- Arises when other distributions are truncated

- Lognormal
 - Arises when normally
 distributed variables are
 multiplied or transformed

Х

Correlation of Noise Factors

• Covariance

$$COV(x, y) = E((x - E(x))(y - E(y)))$$

$$COV(x, y) \cong \sum_{i=1}^{n} \sum_{j=1}^{m} (x_i - \overline{x})(y_j - \overline{y})$$

Correlation coefficient
 What does k=1 imply?

$$k = \frac{COV(x, y)}{\sqrt{VAR(x) \cdot VAR(y)}}$$

- What does negative k imply?
- What does k=0 imply?

Question About Noise

- Does the distribution of noise affect the S/N ratio of the simulation?
 - If so, under what conditions?
- Does correlation of noise factors affect S/N ratios?

- If so, in what way? (raise / lower)

Simulating Variation in Noise Factors

- Taylor series expansion
 - Linearize the system response
 - Apply closed form solutions
- Monte Carlo
 - Generate random numbers
 - Use as input to the simulation
- Orthogonal array based simulation
 - Create an ordered set of test conditions
 - Use as input to the simulation

Taylor Series Expansion

- Approximate system response
 f(x,y) = f(x_o, y_o) + \frac{\partial f}{\partial x}\Big|_{x=x_o} \cdot (x-x_o) + \frac{\partial f}{\partial y}\Big|_{y=y_o} \cdot (y-y_o) + \text{h.o.t}
 Apply rules of probability
 - Apply rules of probability VAR(aX) = aVAR(X)

VAR(X+Y) = VAR(X) + VAR(Y) iff x, y independent

• To get

$$\sigma^2(y) = \sum_{i=1}^n \frac{\partial y}{\partial x} \sigma^2(X_i)$$

Local Linearity of the System Response Surface wrt Noise

- Holds for
 - Machining (most)
 - CMMs
- Fails for
 - Dimensions
 - of form

Dual head valve grinding

Key Limitations of Taylor Series Expansion

- System response must be approximately *linear* w.r.t. noise factors
 - Linear over what range?
 - What if it isn't quite linear?
- Noise factors must be statistically independent
 - How common is correlation of noise?
 - What happens when you neglect correlation?

Monte Carlo Simulation

Robust System Design Session #11 MIT

Monte Carlo Simulation Pros and Cons

- No assumptions about system response $f(\mathbf{x})$
- You may simulate correlation among noises
 How can this be accomplished?
- Accuracy not a function of the number of noises

95% confidence interval =
$$\pm \frac{1.96\sigma}{\sqrt{\text{trials}}}$$

It's easy too!

• It takes a large number of trials to get very accurate answers

Othogonal Array Based Simulation

- Define noise factors and levels
- Two level factors
 - Level $1 = \mu_i \sigma_i$ Level $2 = \mu_i + \sigma_i$
- Three level factors - Level $1 = \mu_i - \sqrt{\frac{3}{2}} \sigma_i$ Level $2 = \mu_i$ Level $3 = \mu_i + \sqrt{\frac{3}{2}} \sigma_i$
- Choose an appropriate othogonal array
- Use as the outer array to induce noise

Setting Levels for Lognormal Distributions

Using Sliding Levels to Simulate Correlation

- Try it for RFP
- Mean is defined as RFM
- Tolerance is 2%
- Fill out rows 1 and 19 of the noise array

Run the Noise Array

- At the baseline control factor settings
- Run the simulation at all of the noise factor settings
- Find the system response for each row of the array
- Perform ANOVA on the data
 - Percent of total SS is percent contribution to variance in system response

Othogonal Array Pros and Cons

- Can handle some degree of non-linearity
- Can accommodate correlation
- Provides a direct evaluation of noise factor contributions
- Usually requires orders of magnitude fewer function evaluations than OA simulation

Optimization

- Choose control factors and levels
- Set up an inner array of control factors
- For each row, induce noise from the outer array
- Compute mean, variance, and S/N
- Select control factors based on the additive model
- Run a confirmation experiment

Next Steps

- Homework #8 due on Lecture 13
- Next session
 - Read Phadke Ch. 9 -- "Design of Dynamic Systems"
 - No quiz tomorrow
- Lecture 13- Quiz on Dynamic Systems

