Plan for the Session

- Questions?
- Complete some random topics
- Lecture on Design of Dynamic Systems (Signal / Response Systems)
- Recitation on HW\#5?

Dummy Levels and μ

- Before
- After
- Set SP2=SP3
- μ rises
- Predictions unaffected

Number of Tests

- One at a time
- Listed as small
- Orthogonal Array
- Listed as small
- White Box
- Listed as medium

Linear Regression

- Fits a linear model to data

$$
\mathrm{Y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \cdot \mathrm{X}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}
$$

MIT

Error Terms

- Error should be independent - Within replicates
- Between X values

Least Squares Estimators

- We want to choose values of b_{o} and b_{1} that minimize the sum squared error

$$
\operatorname{SSE}\left(\mathrm{b}_{0}, \mathrm{~b}_{1}\right):=\sum_{\mathrm{i}}\left[\mathrm{y}_{\mathrm{i}}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \cdot \mathbf{x}_{\mathrm{i}}\right]^{2}\right.
$$

- Take the derivatives, set them equal to zero and you get

$$
=\frac{\sum_{i}\left(\mathbf{x}_{\mathrm{i}}-\operatorname{mean}(\mathbf{x}) \cdot \cdot \mathbf{y}_{\mathrm{i}}-\operatorname{mean}(\mathbf{y})\right)}{\sum_{\mathrm{i}}\left(\mathbf{x}_{\mathrm{i}}-\operatorname{mean}(\mathbf{x})\right)^{2}} \quad \mathrm{~b}_{0}:=\operatorname{mean}(\mathbf{y})-\mathrm{b}_{1} \cdot \operatorname{mean}(\mathbf{x})
$$

Distribution of Error

- Homoscedasticity
- Heteroscedasticity

Cautions Re: Regression

- What will result if you run a linear regression on these data sets?

Linear Regression
 Assumptions

1. The average value of the dependent variable Y is a linear function of X.
2. The only random component of the linear model is the error term ε. The values of X are assumed to be fixed.
3. The errors between observations are uncorrelated. In addition, for any given value of X, the errors are are normally distributed with a mean of zero and a constant variance.

If The Assumptions Hold

- You can compute confidence intervals on β_{1}
- You can test hypotheses
- Test for zero slope $\beta_{1}=0$
- Test for zero intercept $\beta_{0}=0$
- You can compute prediction intervals

Design of Dynamic Systems (Signal / Response Systems)

Dynamic Systems Defined

"Those systems in which we want the system response to follow the levels of the signal factor in a prescribed manner"

- Phadke, pg. 213

Examples of Dynamic Systems

- Calipers
- Automobile steering system
- Aircraft engine
- Printing
- Others?

Static versus Dynamic

Static

- Vary CF settings
- For each row, induce noise
- Compute S / N for each row (single sums)

Dynamic

- Vary CF settings
- Vary signal (M)
- Induce noise
- Compute S / N for each row (double sums)

S/N Ratios for Dynamic Problems

Signals

Continuous Digital

Responses	Continuous	C-C
	Digital	D-D

Examples of each?

Continuous - continuous S/N

- Vary the signal among discrete levels
- Induce noise, then compute

$$
\begin{gathered}
\beta=\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} y_{i j} M_{i}}{\sum_{i=1}^{m} \sum_{j=1}^{n} M_{i}^{2}} \\
\sigma_{e}^{2}=\frac{1}{m n-1} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(y_{i j}-\beta M_{i}\right)^{2}
\end{gathered}
$$

$$
\eta=10 \log _{10} \frac{\beta^{2}}{\sigma_{e}^{2}}
$$

Response

Signal Factor

C - C S/N and Regression

C-C S/N

$$
\begin{aligned}
\beta & =\frac{\sum_{i=1}^{m} \sum_{j=i}^{n} y_{j} M_{i}}{\sum_{i=1}^{m=1} \sum_{j=1}^{n} M_{i}^{2}} \\
\sigma_{e}^{2} & =\frac{1}{m n-1} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(y_{j i}-\beta M_{i}\right)^{2} \\
\eta & =10 \log _{10} \frac{\beta^{2}}{\sigma_{e}^{2}}
\end{aligned}
$$

Linear Regression

$\operatorname{SSE}\left(\mathrm{b}_{0}, \mathrm{~b}_{1}\right):=\sum_{\mathrm{i}}\left[\mathbf{y}_{\mathrm{i}}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \cdot \mathbf{x}_{\mathrm{i}}\right)\right]^{2}$

Non-zero Intercepts

- Use the same formula for S / N as for the zero intercept case
- Find a second scaling factor to
independently adjust β and α

Response

Signal Factor

Continuous - digital S/N

- Define some continuous response y

Response

- The discrete output y_{d} is a function of y

Temperature Control Circuit

- Resistance of thermistor decreases R_{T} with increasing temperature
- Hysteresis in the circuit lengthens life

Response R_{T}

Signal Factor

System Model

- Known in closed form

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}_{-} \mathrm{ON}}=\frac{\mathrm{R}_{3} \cdot \mathrm{R}_{2} \cdot\left(\mathrm{E}_{\mathrm{z}} \cdot \mathrm{R}_{4}+\mathrm{E}_{\mathrm{o}} \cdot \mathrm{R}_{1}\right)}{\left.\mathrm{R}_{1} \cdot \mathrm{E}_{\mathrm{Z}} \cdot \mathrm{R}_{2}+\mathrm{E}_{\mathrm{Z}} \cdot \mathrm{R}_{4}-\mathrm{E}_{\mathrm{o}} \cdot \mathrm{R}_{2}\right)} \\
& \mathrm{R}_{\mathrm{T}_{-} \mathrm{OFF}}=\frac{\mathrm{R}_{3} \cdot \mathrm{R}_{2} \cdot \mathrm{R}_{4}}{\mathrm{R}_{1} \cdot \mathrm{R}_{2}+\mathrm{R}_{4}}
\end{aligned}
$$

Problem Definition

What if R_{3} were also a noise? What if R_{3} were also a CF?

Noise Factors

$$
\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}, \mathrm{E}_{\mathrm{o}}, \mathrm{E}_{\mathrm{z}}
$$

Response

$\mathrm{R}_{\mathrm{T} \text {-OFF }}$
Control Factors
$\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{4}, \mathrm{E}_{\mathrm{z}}$

Results（Graphical）

E_{z}

$\mathrm{m}(20 \cdot \overrightarrow{\log (\beta \mathrm{ON})}, \mathrm{A})_{\text {level }}$
ロロー
$20 \cdot \overrightarrow{\log (\beta \mathrm{ON}}$ $\mathrm{m}\left(20 \cdot \overrightarrow{\log \left(\beta_{\mathrm{OFF}}\right)}, \mathrm{A}\right)_{\text {level }}$
ㅂロ불
mean $20 \cdot \log \left(\beta_{\text {OFF }}\right)$

Results (Interpreted)

- R_{T} has little effect on either S / N ratio
- Scaling factor for both β s
- What if I needed to independently set $\beta \mathrm{s}$?
- Effects of CFs on $\mathrm{R}_{\text {T-OFF }}$ smaller than for $\mathrm{R}_{\mathrm{T}-\mathrm{ON}}$
- Best choices for $\mathrm{R}_{\mathrm{T}-\mathrm{ON}}$ tend to negatively impact $\mathrm{R}_{\mathrm{T}-\mathrm{OFF}}$
- Why not consider factor levels outside the chosen range?

Next Steps

- Homework \#8 due 7 July
- Next session Monday 6 July 4:10-6:00
- Read Phadke Ch. 9 -- "Design of Dynamic Systems"
- No quiz tomorrow
- 6 July -- Quiz on Dynamic Systems

