Quiz #2 Matrix Experiments

- 1) Does the following matrix experiment have the balancing property with respect to control factors A and B?
- 2) Does the following matrix experiment have the balancing property with respect to control factors B and C?
- 3) Does the following matrix experiment have the balancing property with respect to control factors A and D?
- 4) Is the matrix an orthogonal array?

	Control Factors			
Expt.	Α	В	С	D
No.				
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	2
5	2	2	3	1
6	2	3	1	2
7	3	1	3	3
8	3	2	1	3
9	3	3	2	1

- 5) After completing a matrix experiment, if an additive (factors separable) model holds, and one wishes to maximize the S/N ratio, one should
 - a) Select the control factor settings in the row of the array corresponding to the experiment with the highest response.
 - b) Select the noise factor levels that maximize the inner product of the array.
 - c) Select the level of each control factor level independently based on its average effect on the S/N ratio.
 - d) Select the noise factor levels that minimize the variance of the response.
- 6) In many cases, matrix experiments using orthogonal arrays may be preferred to one factor at a time experiments because
 - a) The balancing property provides a better trade-off among desired system quality characteristics.
 - b) One factor at a time experiments do not provide the flexibility to progressively adapt the experimental design to the data.
 - c) Orthogonal arrays give more reliable estimates of factor effects in the same number of experiments or fewer as compared to one factor at a time experiments.
 - d) One factor at a time experiments cannot determine factor effects when an additive model is used to approximate the system response.

- 7) In order to conduct a *full factorial* experiment on a system with 4 control factors each having 3 levels (with no replicates), how many experiments would one would need to conduct?
- 8) In order to resolve only the main effects in a system with 4 control factors each having 3 levels (with no replicates), how many experiments would one would need to conduct?
- 9) The verification experiment primarily serves to
 - a) Confirm that the assumptions in the experiment actually hold and that therefore the predicted improvement in system performance can be realized
 - b) Establish that the experiment was indeed orthogonal
 - c) Provide additional tuning of the noise factor levels
 - d) Provide data needed for ANOVA
- 10) A response y is known to be governed by the relationship

$$y=ax+b$$

where x is a random variable with a mean of 2 and standard deviation of 3. The losses L due to deviation of y from its target m are given by

 $L(y) = k(y-m)^2$

Which settings of *a* and *b* among those listed will give the lowest expected value of quality loss?

- a) *a*=3, *b*=*m*
- b) *a*=3, *b*=*m*-3
- c) a=2, b=m
- d) *a*=2, *b*=*m*-2