Lean Supply Chain Management Principles and Practices

Professor Deborah Nightingale

October 3, 2005

- Lean supply chain management represents a new way of thinking about supplier networks
- Lean principles require cooperative supplier relationships while balancing cooperation and competition
- Cooperation involves a spectrum of collaborative relationships & coordination mechanisms
- Supplier partnerships & strategic alliances represent a key feature of lean supply chain management

Theory: Lean Represents a "Hybrid" Approach to Organizing Interfirm Relationships

- "Markets" (Arm's Length): Lower production costs, higher coordination costs
 - Firm buys (all) inputs from outside specialized suppliers
 - Inputs are highly standardized; no transaction-specific assets
 - Prices serve as sole coordination mechanism
- "Hierarchies" (Vertical Integration): Higher production costs, lower coordination costs
 - Firm produces required inputs in-house (in the extreme, all inputs)
 - Inputs are highly customized, involve high transaction costs or dedicated investments, and require close coordination
- "Lean" (Hybrid): Lowest production and coordination costs; economically most efficient choice-- new model
 - Firm buys both customized & standardized inputs
 - Customized inputs often involve dedicated investments
 - Partnerships & strategic alliances provide collaborative advantage

Dominant conventional approach: Vertical integration, arm's length relationships with suppliers

ESD.61J / 16.852J: Integrating the Lean Enterprise

Lean Supply Chain Management Differs Sharply from Conventional Practices (I)

ILLUSTRATIVE CHARACTERISTICS	CONVENTIONAL MODEL	LEAN MODEL
Number & structure	Many; vertical	Fewer; clustered
Procurement personnel	Large	Limited
Outsourcing	Cost-based	Strategic
Nature of interactions	Adversarial; zero-sum	Cooperative; positive-sum
Relationship focus	Transaction-focused	Mutually-beneficial
Selection criteria	Lowest price	Performance
Contract length	Short-term	Long-term
Pricing practices	Competitive bids	Target costing
Price changes	Upward	Downward
Quality	Inspection-intensive	Designed-in

Lean Supply Chain Management Differs Sharply from Conventional Practices (II)

ILLUSTRATIVE CHARACTERISTICS	CONVENTIONAL MODEL	LEAN MODEL
Delivery	Large quantities	Smaller quantities (JIT)
Inventory buffers	Large	Minimized; eliminated
Communication	Limited; task-related	Extensive; multi-level
Information flow	Directive; one-way	Collaborative; two-way
Role in development	Limited; build-to-print	Substantial
Production flexibility	Low	High
Technology sharing	Very limited; nonexistent	Extensive
Dedicated investments	Minimal-to-some	Substantial
Mutual commitment	Very limited; nonexistent	High
Governance	Market-driven	Self-governing
Future expectations	No guarantee	Considerable

Lean Supply Chain Management Principles Derive from Basic Lean Principles

- Focus on the supplier network value stream
- Eliminate waste
- Synchronize flow
- Minimize both transaction and production costs
- Establish collaborative relationships while balancing cooperation and competition
- Ensure visibility and transparency
- Develop quick response capability
- Manage uncertainty and risk
- Align core competencies and complementary capabilities
- Foster innovation and knowledge-sharing

Mutually-Reinforcing Lean Practices Translate these Principles into Action

Design supplier network architecture	 Design of supplier network driven by strategic thrust
	 Fewer suppliers; "clustered control"
	 Supplier selection based on performance
Develop complementary supplier	 Ensured process capability (certification)
capabilities	 Targeted supplier development (SPC, Kaizen)
	 Greater responsibilities delegated to suppliers
Create flow and pull throughout	Linked business processes, IT/IS infrastructure
supplier network	Two-way information exchange & visibility
	Synchronized production and delivery (JIT)
Establish cooperative relationships &	 Joint problem-solving; mutual assistance
effective coordination mechanisms	 Partnerships & strategic alliances
	 Open and timely communications
	 Increased interdependence & "shared destiny"
Maximize flexibility & responsiveness	 Seamless information flow
	Flexible contracting
	Rapid response capability
Optimize product development	 Integrate suppliers early into design &
through early supplier integration	development IPTs
	 Collaborative design; architectural innovation
	 Open communications and information sharing
	Target costing; design-to-cost
Integrate knowledge and foster	 Knowledge-sharing; technology transfer
innovation	 Aligned technology roadmaps

Synchronized Production and Delivery

- Integrated supplier lead times and delivery schedules
- Flows from suppliers pulled by customer demand (using takt time, load leveling, line balancing, single piece flow)
- Minimized inventory through all tiers of the supply chain
- On-time supplier delivery to point of use
- Minimal source or incoming inspection
- Effective two-way communication links to coordinate production & delivery schedules
- Striving for zero quality defects essential to success
- Greater efficiency and profitability throughout the supplier network

Supplier Certification has been an Important Early Enabler of Achieving Synchronized Flow in Aerospace

Concrete Example: Engine Parts Casting Supplier Worked with Customer Company to Achieve Synchronized Flow

© Deborah Nightingale, 2005 Massachusetts Institute of Technology

Source: LAI

Mastering & Integrating Lean Basics with Prime was Necessary for Achieving Synchronized Flow

- 6S -- Visual factory
- Total productive maintenance
- Quality control
- Process certification
- Mistake proofing
- Setup reduction
- Standard work
- Kaizen

Partnerships and Strategic Alliances

Paradigm Shift in Supply Chain Management **Thinking: Evolving Lean Supplier Networks**

- Early supplier integration into design Alignment of technology roadmaps Knowledge integration & fostering innovation across supplier network
- Supplier partnerships & alliances
- Common objectives
- Value stream mapping
- Continuous improvement

ESD.61J / 16.852J: Integrating the Lean Enterprise

Make-buy linked to corporate strategic thrust

- Align & develop supplier capabilities
- **Open communications**

- Exhibit superior performance system-wide -- greater efficiency, lower cycle time, higher quality
- Not an accident of history but result of a dynamic evolutionary process
- Not culture dependent but are transportable worldwide
- Can be built through a proactive, well-defined, process of change in supply chain management

- Reduced transaction costs (cost of information gathering, negotiation, contracting, billing)
- Improved resource planning & investment decisions
- Greater production predictability & efficiency
- Improved deployment of complementary capabilities
- Greater knowledge integration and R&D effectiveness
- Incentives for increased innovation (through cost-sharing, risk-sharing, knowledge-sharing)
- Increased mutual commitment to improving joint long-term competitive performance

Major Lean Lessons

- Supply chain design linked to corporate strategic thrust
 - Fewer first-tier suppliers
 - Greater supplier share of product content
- Strategic supplier partnerships with selected suppliers
 - Trust-based relationships; long-term mutual commitment
 - Close communications; knowledge-sharing
 - Multiple functional interfaces
- Early supplier integration into design
 - Early and major supplier role in design
 - Up-front design-process integration
 - Leveraging supplier technology base for innovative solutions
- Self-enforcing agreements for continuous improvement
 - Target costing
 - Sharing of cost savings

Chrysler: Supplier Partnerships Speed Development

ESD.61J / 16.852J: Integrating the Lean Enterprise

Integrate suppliers early into design and development IPT's

ARCHITECTURAL INNOVATION: Major modification of how components in a system/product are linked together

•Significant improvement in system/product architecture through changes in form/structure, functional interfaces or system configuration

•Knowledge integration over the supplier network (value stream perspective ; prime-key suppliers-subtiers; tapping supplier technology base)

- Transform "tribal regimes" (today's transaction-intensive supplier networks) into "innovation networks" (learning networks with shared goals)
 - Collaborative networks
 - Enhanced flexibility
 - Responsiveness to emerging needs
- Emphasis on:
 - Innovations in system & cross-platform integration (primes)
 - Modular & architectural innovation (supplier networks)

Summary of Key Practices Enabling Architectural Innovation

- Pre-sourcing; long-term commitment
- Early supplier integration into IPTs; IPPD; co-location; joint design & configuration control
- Leveraging technology base of suppliers (key suppliers; tooling suppliers; subtiers)
- Workshare arrangements optimizing supplier core competencies
- Retaining flexibility in defining system configuration
- Open communications; informal links; knowledge-sharing
- Target costing; design to cost
- Supplier-capability-enhancing investments
- Incentive mechanisms (not to compete agreements; long-term warranty); maintaining trade secrets
- Government part of the team; relief from military standards and specifications

ESD.61J / 16.852J: Integrating the Lean Enterprise

Electronic Integration of Supplier Networks: Early Results

Challenge: Electronic integration of supplier networks for technical data exchange as well as for synchronization of business processes

- Important success factors include:
 - Clear business vision & strategy
 - Early stakeholder participation (e.g., top management support; internal process owners; suppliers ; joint configuration control)
 - Migration/integration of specific functionality benefits of legacy systems into evolving new IT/IS infrastructure
 - Great care and thought in scaling-up experimental IT/IS projects into fullyfunctional operational systems
- Electronic integration of suppliers requires a process of positive reinforcement -- greater mutual information exchange helps build increased trust, which in turn enables a closer collaborative relationship and longer-term strategic partnership
- Close communication links with overseas suppliers pose a serious security risk and complex policy challenge

ESD.61J / 16.852J: Integrating the Lean Enterprise

Quick Review of Aerospace Progress

- Aerospace industry has made important strides in supplier integration, but this is only the beginning of the road
 - Production: Supplier certification and long-term supplier partnerships -process control & parts synchronization
 - Development: Early supplier integration into product development critical
 - Strategic supply chain design is a meta core competency
- Implementation efforts have required new approaches
 - Re-examination of basic assumptions (e.g., make-buy)
 - New roles and responsibilities between primes and suppliers
 - Communication and trust fundamental to implementation
- Aerospace community faces new challenges and opportunities
 - Imperative to take "value stream" view of supplier networks
 - Focus on delivering best lifecycle value to customer
 - Need to evolve information-technology-mediated new organizational structures for managing extended enterprises in a globalized market environment

Lean Supplier Networks Offer Significant Competitive Advantages

- Exhibit superior performance system-wide -- greater efficiency, lower cycle time, higher quality
- Not an accident of history but result of a dynamic evolutionary process
- Not culture dependent but are transportable worldwide
- Can be built through a proactive, well-defined, process of change in supply chain management

- Does the size, structure and composition of the supplier network reflect your enterprise's strategic vision?
- Has your enterprise created partnerships and strategic alliances with key suppliers to strengthen its long-term competitive advantage?
- Are suppliers integrated into your enterprise's product, process and business development efforts?

- Is your enterprise actively fostering innovation across your supplier network?
- Are you integrating knowledge throughout your enterprise value stream?
- Has your enterprise established mutually-beneficial arrangements with suppliers to ensure flexibility and responsiveness to unforeseen external shifts?
- Does your enterprise have in place formal processes and metrics for achieving continuous improvement throughout the extended enterprise?

Supplier Partnerships Driven by Strategic Corporate Thrust to Develop Integrated Supplier Networks

KEY PRACTICES	BEFORE	AFTER
Reduced and streamlined supplier base		
 Number of direct production suppliers 		162
Improved procurement efficiency		
 Procurement personnel as % of total employment (%) 	4.9	1.9
 Subcontracting cycle time (days) 	13	7
Improved supplier quality and schedule		
 Procurement (dollars) from certified suppliers (%) 	0	75
 Supplier on-time performance (% of all shipments) 	76.4*	83.0
Established strategic supplier partnerships		
 Procurement dollars under long-term agreements(%) 		95
 "Best value" subcontracts as % all awards 	50.0	100.0

Source: LAI

Historic opportunity for achieving BEST LIFECYCLE VALUE in aerospace weapon system acquisition through early supplier integration into design and development process

- Nearly 80% of life cycle cost committed in early design phase
- Design and development of complex aerospace systems calls on core capabilities of numerous suppliers, providing as much as 60%-70% of end product value
- Supplier network represents an enormous beehive of distributed technological knowledge & source of cost savings
- What are better ways of leveraging this capability for more efficient product development in aerospace sector?
- Worldwide auto industry experience provides critical lessons

Lean Difference: Auto Industry

Lean Difference: Significantly lower development cost and shorter cycle time

ESD.61J / 16.852J: Integrating the Lean Enterprise

Lean Difference: Auto Industry Supplier Role in Design

Lean difference starts with significant supplier role in design and development

ESD.61J / 16.852J: Integrating the Lean Enterprise

© Deborah Nightingale, 2005 Massachusetts Institute of Technology

*Builds on and extends Paul Cejas, Donnita Bennett and Susan Moehring, "A Value Stream Approach to Weapon Systems Affordability," Presentation at the Lean

Aerospace Initiative (LAI) Joint Workshop in Dallas, TX (31 January 2001).

ESD.61J / 16.852J: Integrating the Lean Enterprise

Page 32

© Deborah Nightingale, 2005 Massachusetts Institute of Technology

Collaborative Enterprise Supplier Networks

4 Elements of the Extended Enterprise

- 1. Designing the **boundaries** of the firm (i.e. the "Governance Profile"
- 2. Investing in "Dedicated (relationship-specific) Assets"
- 3. Inter-organizational Knowledge-sharing
- 4. Inter-organizational **Trust**

ESD.61J / 16.852J: Integrating the Lean Enterprise

Integration-Disintegration Pressures

Integration Liabilities

- Loss of High-Powered Incentives
 - No strong connection between output and rewards
 - Difficult to "fire" a sister division
 - Less access to residual profits

Loss of Scale and Access to Outside Customers

- Loss of economies of scale
- Loss of information from external customers who provide ideas
- Catch-22: prohibited from selling superior products outside, however, if not differentiated, then buyers won't purchase products from competitors.

Loss of Strategic Flexibility

- Inability to raise capital
- Higher Labor Costs
 - Larger firms tend to pay higher wages and have stronger labor unions

ESD.61J / 16.852J: Integrating the Lean Enterprise

Page 36

© Deborah Nightingale, 2005 Massachusetts Institute of Technology

Current Trends

Key Trends:

Result:

Implication:

- 1. Advancement in Information Technology
- 2. Growth in Knowledge and increased Product Complexity
- 3. Increased Customization of Demand

Pressures for greater **Specialization** of Economic Activities

Vertical Integration is less desirable

Pressures for greater **Coordination** of Economic Activities

Arm's Length Relationships are less desirable

Summary of "Governance Profiles"

ESD.61J / 16.852J: Integrating the Lean Enterprise

Example "Governance Profiles"

"Governance Profile Summary"

"Virtual Integration – 3 Ingredients"

Dedicated Asset Investments

• Investment in factories, equipment, processes and people that are customized to a particular customer or supplier.

Knowledge-Sharing Routines

Proprietary Knowledge

Inter-firm Trust

 History of following-through on promises and commitments and refusal to take advantage, even when it has the chance.

Dedicated Assets

Dedicated Asset Investments

 Investment in factories, equipment, processes and people that are customized to a particular customer or supplier.

• Three types of Dedicated Assets:

- Site Specialization
- Physical Asset Specialization
- Human Specialization

• Toyota's two types of suppliers:

- Affiliated suppliers (Kankei Kaisha).
 - Toyota has a minority stock ownership position.
 - They transfer employees (*Guest Engineers*)
 - 20% of top managers were former Toyota employees
 - They average only 30 miles distance
- Independent Suppliers (Dokuritsu Kaisha)

Site Specialization

Average Distance Between Supplier and Automaker Plants (in miles)

ESD.61J / 16.852J: Integrating the Lean Enterprise

Human Specialization

Physical Asset Specialization

- 22% of Toyota's supplier's capital investment were so dedicated to their primary customer, that they could not be redeployed if Toyota walked away.
- 15% of US firms supplier's capital investment were so dedicated to their primary customer, that they could not be redeployed if the US firm walked away.

Toyota's Consulting Teams

- OMCD (Operations Management Consulting Division)
 - 6 senior executives
 - 50 consultants
 - 15-20 permanent consultants
 - 25-30 "fast-track" younger consultants
- TSSC (Toyota Supplier Support Center)
 - US version of the OMCD
- Toyota invests \$50 million annually on Supplier Training
 - This is only 0.03% on annual revenues of \$150 billion
 - \$50 million invested to achieve 3.3% spread on profits for themselves (& their suppliers) = \$5 billion
 - For every \$1 spent on Supplier Training, \$100 comes back in profit.

