Preliminary Design Review

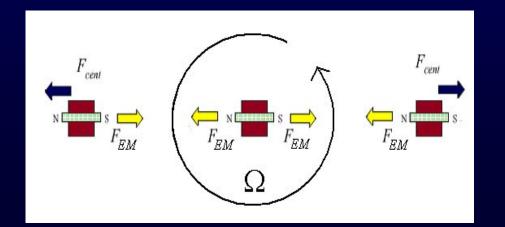
May 7, 2002 Space System Product Development Class Department of Aeronautics & Astronautics, MIT Electro Magnetic Formation Flight Of Rotating Clustered Entities

Introduction

Mission
Background & Motivation
Requirements
Summary
Approach
PDR Purpose
Overview

Subsystems Operations Implementation Conclusion

Introduction


Geeta Gupta

EMFFORCE Mission

Introduction

- Mission
 Background & Motivation
 Requirements
 Summary
 Approach
- •PDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion Demonstrate the feasibility of electromagnetic control for formation flying satellites.

5/24/2002

Introduction

•Mission •<u>Background &</u> <u>Motivation</u>

•Requirements Summary

•Approach

•PDR Purpose

•Overview

Subsystems Operations Implementation Conclusion

Definition of Formation Flight

A cluster of cooperating satellites flying in a desired formation.

Applications of Formation Flight

Introduction

- •Mission •<u>Background &</u> <u>Motivation</u>
- RequirementsSummaryApproach
- •PDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion

Large sensor apertures

- Increased resolution
- Servicing
 - Can replace failed formation elements individually

Upgrade and Maintenance

- Can work on individual components without removing whole mission
- Change formation geometry
 - Evolving mission sensing requirements

Advantages of Formation Flight

Introduction

•Mission •<u>Background &</u> <u>Motivation</u>

- •Requirements Summary
- •Approach
- •PDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion

- Large baselines to improve angular resolution
- Smaller vehicles
 - Ease of packaging, launch and deployment
- Redundancy
 - Mission does not fail if one satellite fails
- Reconfigurable
 - Replace individual space craft
 - Can integrate new technology during mission

Challenges of Formation Flight

Introduction

- •Mission •<u>Background &</u> <u>Motivation</u>
- •Requirements
- Summary
- •Approach
- •PDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion

Command and Control

- Control multiple vehicles' absolute positions/motion vs.. relative positions/motion
- Propellant Drawbacks
 - Fuel limits lifetime
 - Exhaust particulates contaminate imaging instruments
 - Exhaust creates haze which limits imaging

Definition of Electromagnetic Control

Introduction

•Mission •<u>Background &</u> Motivation

•Requirements

Summary

•Approach

•PDR Purpose

•Overview

Subsystems Operations Implementation Conclusion Implement electromagnetic dipoles to create forces and torques between the vehicles

- Dipoles can be controlled by varying the amount of current through the electromagnet coil.
 - Can provide steady forces and torques for maneuverability
 - Can provide disturbance rejection for more precise control

Advantages of EMFF

Introduction

•Mission •<u>Background &</u> <u>Motivation</u>

•Requirements

- Summary
- •Approach
- •PDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion No thrusters

- Fewer consumables → Longer life
- Zero pollution
 - \rightarrow No contact contamination
 - \rightarrow No radiative contamination

Controls relative position/motion vs.. absolute position/motion

Challenges of EMFF

Introduction

•Mission •<u>Background &</u>

Motivation

- •Requirements
- Summary
- •Approach
- •PDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion

Control Problem

- Unstable not unique to EMFF
- Coupled control
 - Each vehicles' motion affects all other vehicles
- Electromagnet Drawbacks
 - Ferromagnetic material is heavy
 - Electromagnetic force is weak
 - Force in the far-field drops of as the 4th power of separation distance
 - Electromagnetic interference with other electronic subsystems

Customer Requirements

Introduction

- •Mission
- •Background &
- Motivation
- •<u>Requirements</u>
- **Summary**
- ApproachPDR Purpose
- •Overview

Subsystems Operations Implementation Conclusion

- Multiple Vehicles
- Representative Formation Flying Vehicles
- Control to replace thrusters
- Control three degrees of freedom (DOF), traceable to six DOF
- Robust controller
 - Disturbance rejection
 - Reposition vehicles

Constraints

Introduction

Mission
Background & Motivation
Requirements
Summary
Approach
PDR Purpose
Overview

Subsystems Operations Implementation Conclusion

- Schedule
- Budget
- Limited human resources to CDIO class and staff
- Testing facility
- No use of umbilical resources; power, air supply, communications
- Recorded test data
- Safety of people, facility, and system

System Functional Requirements

Introduction

•Mission

•Background &

Motivation

•<u>Requirements</u>

Summary

ApproachPDR Purpose

•Overview

Subsystems Operations Implementation Conclusion

Musts:

- Stability with at least three vehicles
- Control in each relative DOF

Shoulds:

- Representative 5 rotation maneuver
 - One rotation spin-up, 3 rotations steady state, and one rotation spin-down
- Operate in the far field
 - Separation distance at least 10x length of electro-magnet

System Operational Requirements

Introduction

Mission
Background & Motivation
Requirements
Summary
Approach
PDR Purpose
Overview

Subsystems Operations Implementation Conclusion

- Test time 5 minutes
- Identical interchangeable vehicles
- Send/record test data
- Respond to other satellites
- Respond to user input
- Demonstrate autonomy
- Maintain safety

Introduction

Mission
Background & Motivation
Requirements
Summary
<u>Approach</u>
PDR Purpose
Overview

Subsystems Operations Implementation Conclusion

EMFFORCE Testbed Development Approach

- Conceive and Design EMFFORCE testbed → PDR May 7, 2002
- Implement testbed → CDR Nov., 2002
- Operate completed testbed → AR March, 2003
 - Operate at MIT
 - Operate at Lockheed Flat Floor Facility in Denver

PDR Purpose

Introduction

Mission
Background & Motivation
Requirements
Summary
Approach
PDR Purpose
Overview

Subsystems Operations Implementation Conclusion To review the preliminary design and identify and resolve high risk elements of the system.

Have outside expert review of current progress.

Space System Product Development Class

<u>Actuation</u> Jesus Bolivar William Fournier Lindsey Wolf Melanie Woo Formation Flight Amilio Aviles Andre' Bosch Oscar Murillo Leah Soffer <u>Systems</u> Amilio Aviles Jesus Bolivar Geeta Gupta

Electronics Stephanie Slowik Erik Stockham Maggie Sullivan Jennifer Underwood <u>Structure/Power</u> Geeta Gupta Amy Schonsheck Timothy Sutherland

5/24/2002

Overview

Introduction

- •Mission
- •Background &
- Motivation
- •Requirements
- Summary
- •Approach
- •<u>Overview</u>

Subsystems Operations Implementation Conclusion

Sub-System design

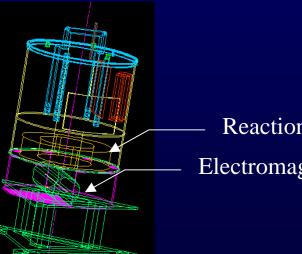
- Actuation
- Formation Flight
- Electronics
- Structure/Power
- Operations
- Implementation
 - Resource Tracking
 - Budgets
 - Verification & Validation
 - Schedules
 - Action Items
- Conclusion

Introduction **Subsystems** Actuation •Requirements

•EM

•Reaction Wheel

•Issues


•Budget

Estimates

•Formation Control •Electronics •Structure/Power

Operations Implementation Conclusion

Actuation

Melanie Woo

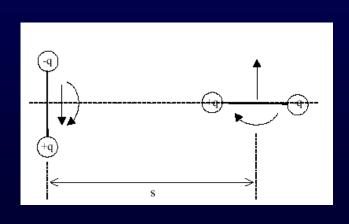
Reaction Wheel

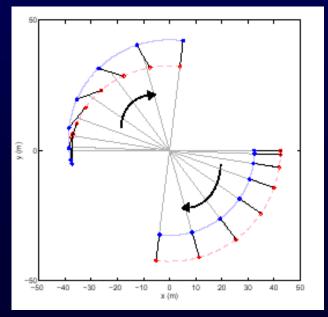
Electromagnet

Actuation

Introduction Subsystems •Actuation

- •Requirements
- •EM
- •Reaction Wheel
- •Issues
- •Budgets
- **Estimates**


Formation ControlElectronics


•Structure/Power

Operations Implementation Conclusion

EM force induces spin-up of cluster from initial perpendicular orientation RW provides counter torgue to balance

moments induced by electromagnets

Actuation Requirements

Introduction

Subsystems

Actuation

•Requirements

•EM

•Reaction Wheel

•Issues

•Budget

Estimates

Formation ControlElectronicsStructure/Power

Operations Implementation Conclusion Actuate control of vehicle cluster

- Magnets must be controllable in necessary DOF
- No thrusters may be used
 - Electromagnets provide force
 - Reaction wheel provides torque
- Minimize mass and power consumption

Trades – EM Configuration

Introduction

Subsystems

•Actuation

•Requirements

•EM

•<u>Trades</u>

•Design •Reaction Wheel

•Issues

•Budget

Estimates

•Formation Control

•Electronics

•Structure/Power

Operations Implementation Conclusion

Possible configurations: ۲ • Dipole, Y-pole, L-pole, X-pole Eliminate: L-pole: center of mass problem • X-pole: mass distribution to 4 dipole legs

5/24/2002

Trades – EM Configuration

Introduction

Subsystems
•Actuation
•Requirements

•EM

•<u>Trades</u>

•Design •Reaction Wheel

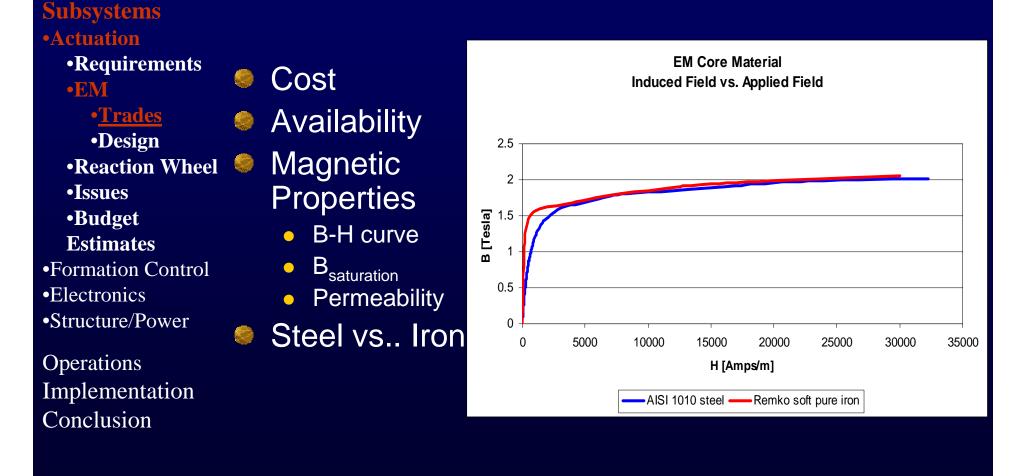
•Issues

•Budget

Estimates

•Formation Control

•Electronics


•Structure/Power

Operations Implementation Conclusion Dipole vs.. Y-pole

- Considerations:
 - Mass distribution: Force
 - Dipole generates greater force since it energizes larger amount of core mass
 - Y-pole can vary direction of magnetic field without being rotated by reaction wheel
 - Torque
 - Y-pole generates additional torque to be countered by reaction wheel

Trades – EM Core Material

5/24/2002

Introduction

Modeling

Introduction

Subsystems

•Actuation

•Requirements

•EM

•<u>Trades</u>

•Design •Reaction Wheel

•Issues

•Budget

Estimates

•Formation Control

•Electronics

•Structure/Power

Operations Implementation Conclusion EM Software: Infolytica MagNet

- Input EM configuration and geometry to obtain forces and torques
- Example:
 - Y-pole configuration
 - Separation: 2 m
 - Core mass: 19.5 kg
 - Applied current: 10 Amps

Modeling

Introduction

Subsystems

Actuation

•Requirements

•EM

•<u>Trades</u>

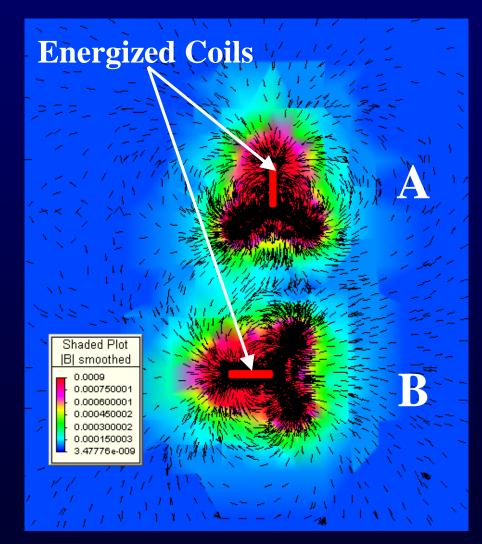
•Design •Reaction Wheel

•Issues

•Budget

Estimates

•Formation Control


•Electronics

•Structure/Power

Operations Implementation Conclusion

Results:

- Force on A and B equal
 - Magnitude:
 0.42 N
- Torque greater on B than A
 - A: 0.052 N-m
 - B: 0.848 N-m

5/24/2002

Test Run Video

Introduction Subsystems •Actuation •Requirements •EM •Trades •Design •Reaction Wheel •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power

Operations Implementation Conclusion

Electromagnetic Formation Flight

MIT Space Systems Lab CDIO-EMFF

Proof of Concept 4/26/02

5/24/2002

Introduction

Subsystems

•Actuation

•Requirements

•EM

•Trades

•Design

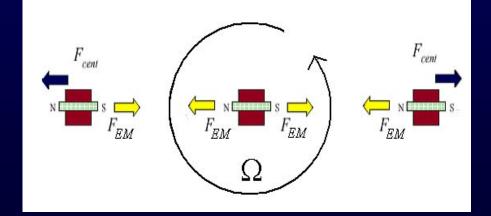
•Reaction Wheel

•Issues

•Budget

Estimates

•Formation Control


•Electronics

•Structure/Power

Operations Implementation Conclusion

Operational Setup

- Separation: 3m
- Spin Rate: 1 RPM

5/24/2002

Introduction

Subsystems

•Actuation

•Requirements

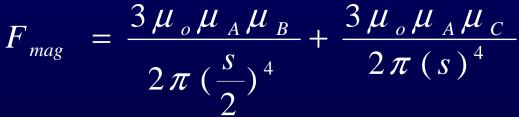
•EM

•Trades

•Design

•Reaction Wheel

•Issues


•Budget

Estimates •Formation Control

•Electronics

•Structure/Power

Operations Implementation Conclusion Magnetic Force for Three Vehicles

Set equal to centripetal force

$$F_{cent} = \Omega^2 \left(\frac{s}{2}\right) m_{tot}$$

Introduction **Subsystems** Actuation •Requirements •EM •Trades •Design •Reaction Wheel •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power Operations n Implementation Conclusion

Substituting in the following relations

$$\mu_A = \mu_B = \mu_C = \frac{BV_{core}}{\mu_o} = \frac{Bm_{core}}{\mu_o\rho_{core}}$$

And solving for m_{core}

$$n_{core} = \frac{\Omega \rho_{core}}{B} \sqrt{\frac{m_{tot} \pi \mu_o s^5}{51}}$$

Introduction Subsystems •Actuation •Requirements •EM •Trades •Design •Reaction Wheel •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power

Implementation Conclusion

Substituting $m_{ot} = m_{core} + m_{coil} + m_{o}$ $m_{coil} = \frac{\rho_{coil}\pi}{C_o\alpha} \left(\frac{4m_{core}\alpha^2}{\rho_{core}\pi}\right)^{\frac{2}{3}}H$ Where $\alpha = \frac{L_{core}}{2r_{core}} \quad C_0 = \frac{i_{max}}{\pi r_{coil}^2} \quad m_0 = 7kg$

Introduction **Subsystems** Substituting Actuation •Requirements •EM •Trades •Design •Reaction Wheel •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power Operations Implementation Conclusion

• $\alpha = 10$ • H = 20000 Solving numerically for m_{core} yields. • $m_{core} = 6.5 \text{ kg}$ Solving for core dimensions \bullet L_{core} = .47m • $r_{core} = .02m$

• B = 2 Tesla

Introduction **Subsystems** Actuation •Requirements •EM •Trades •Design •Reaction Wheel •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power Operations Implementation Conclusion

The applied field is set by the number of amp-turns in the coil

 $Ni = HL_{core}$

- Current limited by the wire gauge
- Number of turns sets coil length and voltage requirements
- Coil mass proportional to Ni
- More analysis needs to be done to optimize number of turns

RW Trades

Introduction Subsystems •Actuation •Requirements •EM •Reaction Wheel

•<u>Trades</u> •Design

•Issues

•Budget

Estimates

•Formation Control

•Electronics

•Structure/Power

Operations Implementation Conclusion Build vs.. Buy

• Will build RW to specifications

• Cheaper

• Commercial RWs are spacecraft sized

Material: Steel vs.. Aluminum vs.. Plastic

• Use Aluminum

Doesn't interfere with magnetic field

 Higher density than plastics – RW will not have to be as large Introduction Subsystems

•Actuation

•Requirements

•EM

•Reaction Wheel

•Trades

•<u>Design</u>

•Issues

•Budget

Estimates

•Formation Control

•Electronics

•Structure/Power

Operations Implementation Conclusion

System Assumptions for RW Analysis

Cluster contains two vehicles

Vehicles are modeled as uniform density cylinders

• Max Ω_{RW} = 2000 rpm ~ 210 rad/s

RW is modeled as a ring with a thin plate in the center

Ring has square cross section with diameter t_{ring}

5/24/2002

r_{RW}

System Dynamics

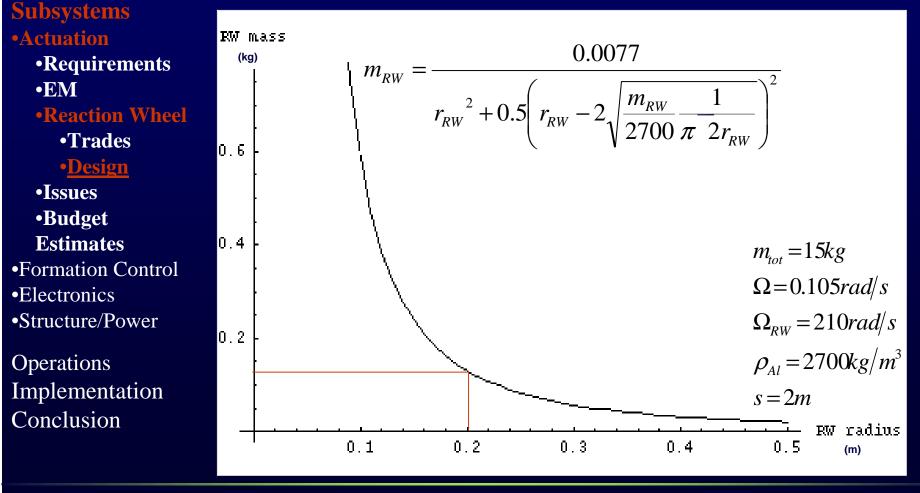
Introduction Subsystems •Actuation •Requirements •EM •Reaction Wheel •Trades •Design •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power

Operations Implementation Conclusion RWs provides counter torque to balance system: $2H_{RW} = -H_{cluster}$

Cluster angular momentum $(H_{cluster}): H_{cluster} = I\Omega$

Cluster moment of inertia (I):

$$I = 2 \left(I_0 + m_{tot} \left(\frac{s}{2} \right)^2 \right)$$


5/24/2002

RW Dynamics

Introduction **Subsystems** Actuation •Requirements •EM •Reaction Wheel •Trades •Design •Issues •Budget **Estimates** •Formation Control •Electronics •Structure/Power Operations Implementation Conclusion

 \blacksquare Moment of inertia of RW (I_{RW}): $I_{RW} = m_{RW} r_{RW}^{2} + \frac{1}{2} m_{RW} (r_{RW} - t_{ring})^{2}$ RW angular momentum (H_{RW}): $H_{RW} = \left(m_{RW} r_{RW}^{2} + \frac{1}{2} m_{RW} \left(r_{RW} - t_{ring}^{2} \right)^{2} \right) \Omega_{RW}$ $RW mass (m_{RW})$: $m_{RW} = t_{ring}^2 2\pi r_{RW} \rho_{Al}$

RW Mass vs.. RW Radius

5/24/2002

Introduction

RW Mass Estimate

Introduction **Subsystems** Actuation •Requirements •EM •Reaction Wheel •Trades •Design •Issues •Budget Estimates •Formation Control •Electronics •Structure/Power Operations Implementation Conclusion

 RW has a mass of 0.16 kg given a radius of 0.2 m
 RW Assembly will not exceed 1 kg - includes motor

5/24/2002

RW Power Analysis

Introduction **Subsystems** Actuation •Requirements •EM Reaction Wheel •Trades •Design •Issues •Budget **Estimates** •Formation Control •Electronics •Structure/Power Operations Implementation Conclusion

RW uses power mainly when applying torque – during spin up P_{RW} = τ_{mag} Ω_{RW}
 Torque induced by dipole (τ_{mag}): τ_{mag} = μ_A×B

Relationship for B-field:

$$B = \frac{\mu_0}{2\pi} \frac{\mu_B}{x^3}$$

RW Power Estimate

Introduction **Subsystems** Actuation •Requirements •EM Reaction Wheel •Trades •Design •Issues •Budgets •Formation Control •Electronics •Structure/Power Operations Implementation Conclusion

• Magnetic moment (μ_A): $\mu_A = \frac{BV_{core}}{\mu_0}$

Power required by RW (P_{RW}):

$$P_{RW} = \frac{\mu_0}{2\pi} \frac{\mu_A \mu_B}{x^3} \Omega_{RW}$$

RW power estimate:

$$P_{RW} \cong 13W$$

$$\begin{split} x &= 1m \\ L_{core} &= 0.5m \\ r_{core} &= 0.02 m \\ V_{core} &= 6.3 \times 10^{-4} m^{3} \\ \Omega_{RW} &= 2000 \ rpm \ = 210 \ rad \ /s \end{split}$$

Actuation Issues

Introduction

Subsystems

Actuation

•Requirements

•EM

•Reaction Wheel

•Issues

•Budget Estimates

Formation ControlElectronicsStructure/Power

Operations Implementation Conclusion System may not be able to operate in the far field
Total mass is large (~15 kg)
Magnet core mass increases rapidly with vehicle mass

Magnet temperature must be monitored during operation

Budgets Estimates

Introduction

Subsystems Actuation Requirements EM 	Part	Cost (\$US)	Mass (kg)	Power (W)
•Reaction Wheel •Issues	Iron Core	100	6.5	>120
• <u>Budget</u> <u>Estimates</u> •Formation Control	Copper Wire	50	1.5	
ElectronicsStructure/PowerOperations	RW Assembly	1000	1	13
Implementation Conclusion	Total (vehicle)	1150	9	133

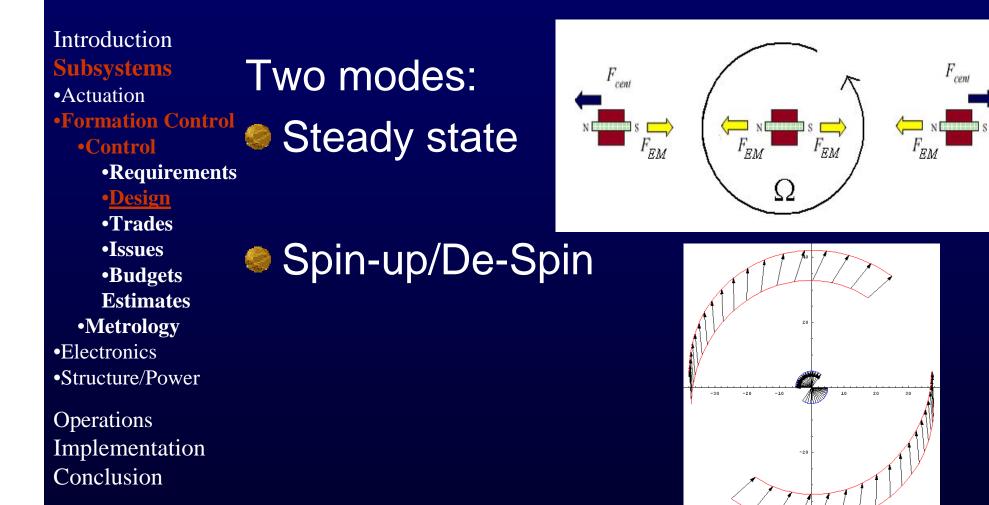
Control

Will Fournier

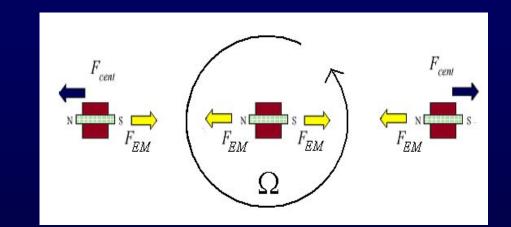
Control

5/24/2002

Requirements


Introduction

Subsystems •Actuation •Formation Control •Control •Control •Requirements •Design •Trades •Issues •Issues •Budgets Estimates •Metrology


ElectronicsStructure/Power

Operations Implementation Conclusion Counteract disturbances **Reposition satellites to perform** maneuvers One rotation spin-up Three rotations steady state One rotation spin-down Control tolerance to 1/10 separation distance

Design

Steady State

Must model axial dynamics

5/24/2002

Introduction

Subsystems

•Control

Formation Control

•<u>Design</u> •Trades •Issues

•Budgets Estimates

•Metrology

•Structure/Power

Implementation

•Electronics

Operations

Conclusion

•Requirements

•Actuation

Steady State Derivation of Poles for Three Vehicles

Introduction **Subsystems** •Actuation •Formation Control Control •Requirements •Design •Trades •Issues •Budgets Estimates •Metrology •Electronics •Structure/Power Operations Conclusion

Force Balance $F_{cent.} = \frac{mv^2}{s} = m\Omega^2 s = \frac{mh^2}{s^3} \qquad F_{EM} = \frac{c_{0avg}}{s^4} + \frac{c_0\mu_{avg}}{(2s)^4}$ Perturbation Analysis $c_0 = \frac{3\mu_0}{2\pi}$ $m\ddot{s} = \frac{c_0 \mu_{avg}^2}{s^4} + \frac{c_0 \mu_{avg}}{(2s)^4} - m\Omega^2 s$ $m(\ddot{s}_{0} + \delta \dot{s}) = \frac{17c_{0}(\mu_{avg} + \delta \mu_{avg})^{2}}{16(s_{0} + \delta s)^{4}} + \frac{mh^{2}}{(s_{0} + \delta s)^{3}} \quad \mu_{A} = \mu_{B} = \mu_{C} = \mu_{avg}$ Implementation $m\delta s - \frac{mh^2}{s_0^4} \delta s = -\frac{c_0 \mu_{avg}}{4s_0^4} \delta \mu_{avg}$ Yields $\pm \frac{h}{{s_0}^2} = \pm \Omega$

State Space Analysis

Introduction Subsystems •Actuation •Formation Control •Control •Requirements •Design •Trades •Issues •Issues •Budgets Estimates •Metrology

ElectronicsStructure/Power

Operations Implementation Conclusion

 $\begin{bmatrix} \frac{\delta \dot{s}}{s_0} \\ \frac{\delta \dot{s}}{s} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \Omega^2 & 0 \end{bmatrix} \begin{bmatrix} \frac{\delta s}{s_0} \\ \frac{\delta \dot{s}}{s} \end{bmatrix} + \begin{bmatrix} 0 \\ 2\Omega^2 \end{bmatrix} \frac{\delta \mu_{avg}}{\mu_{avg}} \dot{\mathbf{x}} = A\mathbf{x} + B\mathbf{u}$ • Using the Cost Function: $J = \int_{-\infty}^{\infty} \left[\mathbf{x}^T R_{xx} \mathbf{x} + \mathbf{u}^T R_{uu} \mathbf{u} \right] dt$ And knowing that cost, J, is minimized when $\underline{0} = \overline{R_{yy}} + PA + A^T P - PBR_{yy}^{-1}B^T P$ $\mathbf{u} = -R_{uu}^{-1}B^T P \mathbf{x} = -F \mathbf{x}$ Where Rxx describes what states the controller penalizes. Ruu describes the "cost" of actuation.

State Space Analysis Continued

Introduction <u>Subsystems</u>

•Actuation

•Formation Control

•Control

•Requirements

•<u>Design</u>

•Trades

•Issues

•Budgets

Estimates

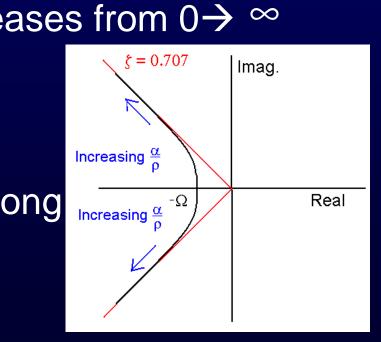
•Metrology

•Electronics •Structure/Power

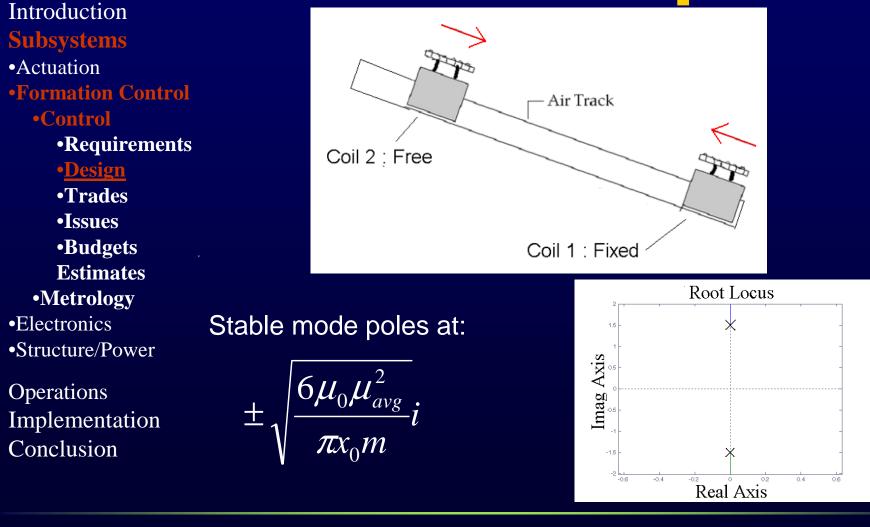
Operations Implementation Conclusion

Choosing:

$$R_{xx} = \begin{bmatrix} \alpha & 0 \\ 0 & 0 \end{bmatrix} \quad R_{uu} = \rho$$
And using:


$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix}$$
Feedback is then:

 $F = R_{uu}^{-1} B^T P = \frac{1}{\rho} \begin{bmatrix} 0 & 2\Omega^2 \end{bmatrix} \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} = \frac{2\Omega^2}{\rho} \begin{bmatrix} P_{12} & P_{22} \end{bmatrix}$


5/24/2002

State Space Analysis Continued

Introduction Subsystems •Actuation •Formation Contro •Control •Requirement •Design	l S		$-F\mathbf{x}$ $\mathbf{x} = [A - BF]\mathbf{x} =$	$A_{CL}\mathbf{x}$	
•Trades •Issues •Budgets		Evaluate as	ho	s from $0 \rightarrow$	Ima
Estimates •Metrology •Electronics •Structure/Power	0	Therefore th op poles for t	the most	Increasing $\frac{\alpha}{\rho}$	
Operations Implementation Conclusion		ficient contro is curve	ller lie along	Increasing $\frac{\alpha}{\rho}^{-\Omega}$	

Steady State Stable Test Setup

5/24/2002

16.62X Uncontrolled System

Introduction Subsystems

•Actuation

Formation Control

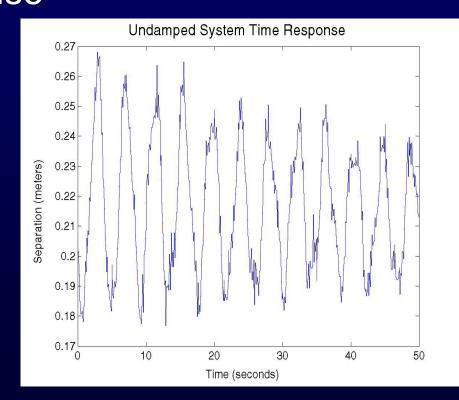
•Control

•Requirements

•<u>Design</u>

•Trades

•Issues •Budgets


Estimates

Metrology

•Electronics •Structure/Power

Operations Implementation Conclusion

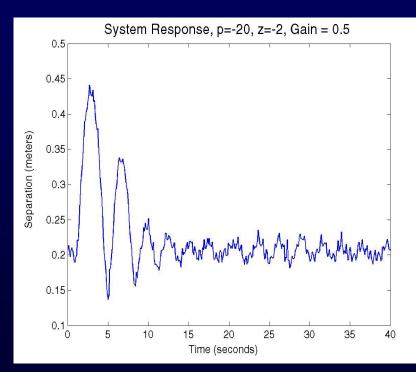
Step response of plant Negligible damping

5/24/2002

16.62x Controlled System

Introduction Subsystems •Actuation

•Formation Control


•Control •Requirements •Design •Trades •Issues •Issues •Budgets Estimates •Metrology

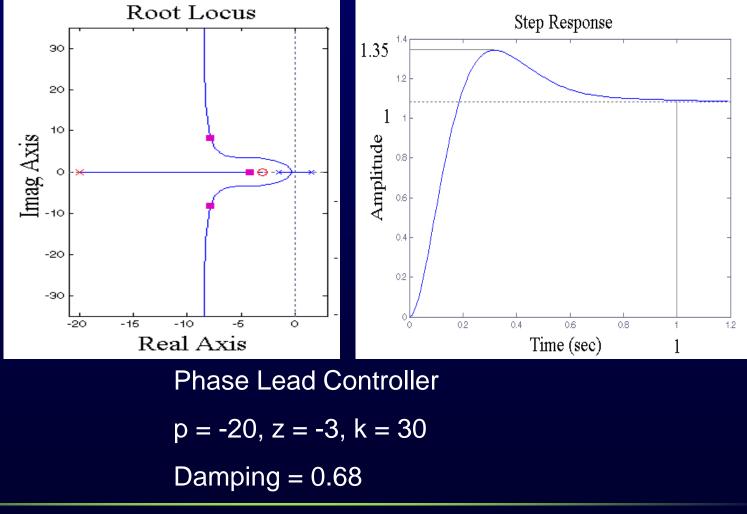
ElectronicsStructure/Power

Operations Implementation Conclusion Phase lead controller

•<u>Design</u> •Tree des

Error caused
 by distance
 sensor noise

Steady State Unstable Test Setup

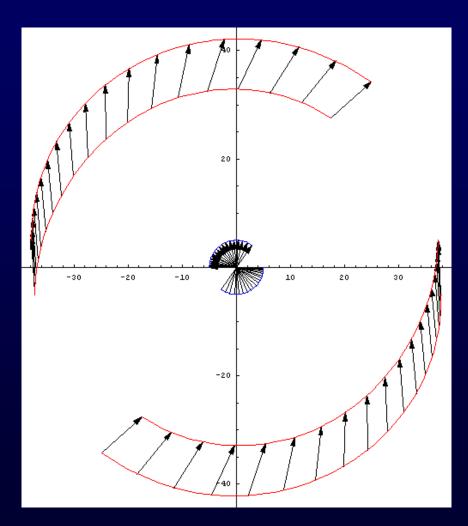

Introduction **Subsystems** •Actuation •Formation Control - Air Track •Control •Requirements •Design Coil 1 : Fixed •Trades •Issues •Budgets Coil 2 ; Free Estimates •Metrology Root Locus Unstable mode poles at: •Electronics •Structure/Power [mag Axis $\frac{6\mu_0\mu_{avg}^2}{\pi x_0m}$ Operations Implementation Conclusion Real Axis

Controller for Unstable Test Setup

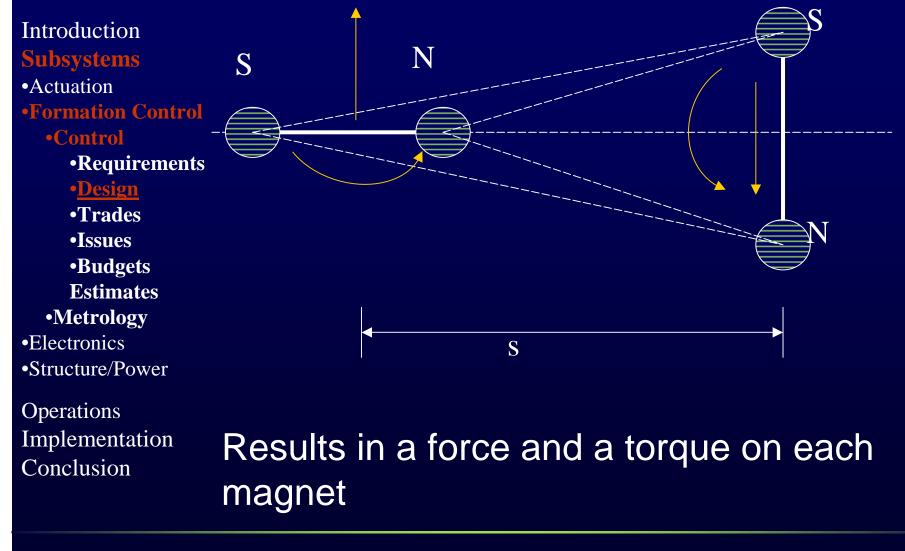
Introduction
Subsystems
•Actuation
•Formation Control
•Control
•Control
•Control
•Requirements
•Design
•Trades
•Issues
•Issues
•Budgets
•Budgets
•Structure/Power

Operations Implementation Conclusion

5/24/2002

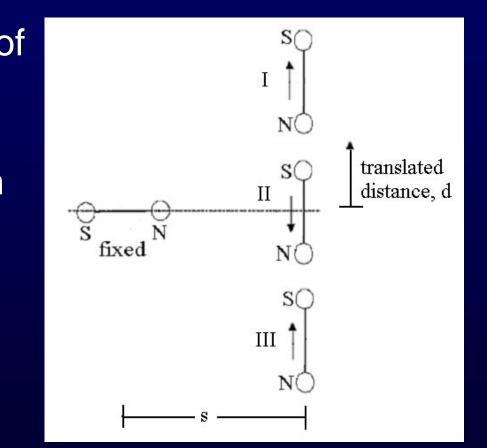


Spin-up/De-spin Modes


Introduction **Subsystems** •Actuation •Formation Control •Control •Design •Trades •Issues •Budgets Estimates •Metrology •Electronics •Structure/Power

Operations Implementation Conclusion

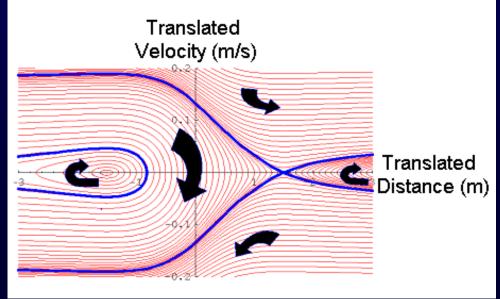
More complex •Requirements Seed to model translational forces and torques


Initial Spin-up Forces

5/24/2002

Response to Translational Forces

Introduction **Subsystems** Three regimes of •Actuation motion •Formation Control •Control •Requirements •<u>Design</u> Two equilibrium •Trades •Issues points •Budgets **Estimates** •Metrology •Electronics •Structure/Power Operations Implementation Conclusion



5/24/2002

Response to Translational Forces

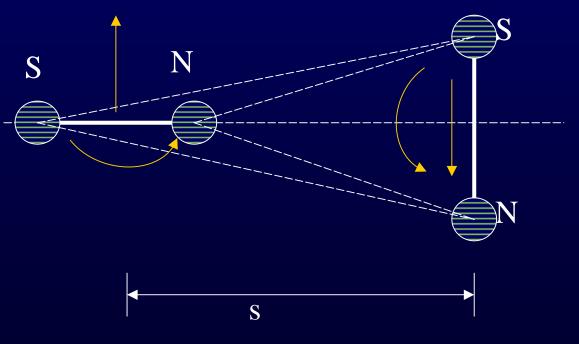
Introduction •Actuation $F_{trans} = \frac{3\mu_0\mu_{avg}^2}{4\pi s^4} [Sin(\alpha + \beta)]$ •Control •Requirements •Design •Trades •Issues •Budgets **Estimates** •Metrology •Electronics •Structure/Power Operations Implementation Conclusion

S Due to the configuration, $F_{trans} = 0$ when $\alpha + \beta = 0$, thus when $d = \pm s$

5/24/2002

Spin-up Configuration Trade

Introduction

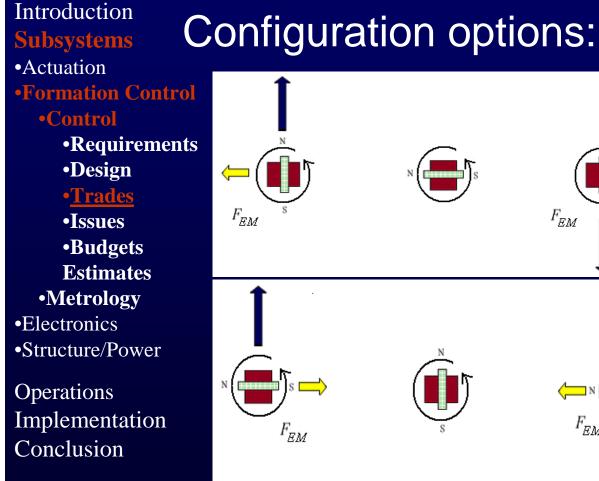

Subsystems

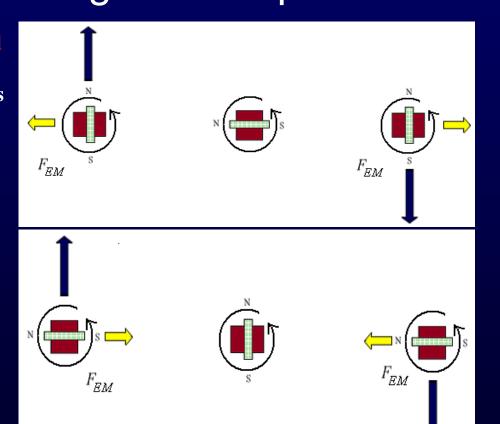
Actuation
 Formation Control
 Control

•Requirements •Design •<u>Trades</u>

•Issues •Budgets Estimates •Metrology •Electronics •Structure/Power

Operations Implementation Conclusion A closer look at the resultant forces on the two dipole configuration




Spin-up Configuration Trade

Introduction **Subsystems** $\alpha=0, \beta=90$ •Actuation S Formation Control •Requirements $\tau_A = \frac{\mu_0 \mu_{avg}^2}{8\pi} [Sin(\alpha - \beta) + 3(\alpha + \beta)]$ •Design •Control •Design A •Trades $\tau_{B} = \frac{\mu_{0}\mu_{avg}^{2}}{8\pi} \left[Sin(\beta - \alpha) + 3(\beta + \alpha) \right]$ •Issues •Budgets S **Estimates** •Metrology $\frac{\tau_{A}}{\tau_{B}} = \frac{\frac{\mu_{0}\mu_{avg}^{2}}{8\pi} [Sin(\alpha - \beta) + 3(\alpha + \beta)]}{\frac{\mu_{0}\mu_{avg}^{2}}{8\pi} [Sin(\beta - \alpha) + 3(\beta + \alpha)]} = \frac{2}{4} = \frac{1}{2}$ •Electronics •Structure/Power Operations Implementation Conclusion

B

Spin-up Configuration Trade

• Favors equally sized vehicles

• Favors a larger center vehicle

5/24/2002

Control Location Trade

Introduction

Subsystems

•Actuation

Formation Control

Control

•Requirements •Design

•<u>Trades</u>

•Issues •Budgets Estimates •Metrology •Electronics

•Structure/Power

Operations Implementation Conclusion

Centralized

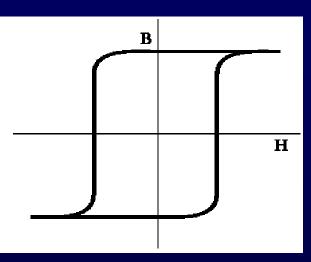
 All information communicated to a hub which calculates a control solution

Independent Control

 Vehicles collect and process their own information and derive a control solution for their own vehicle

Hybrid control

 Certain systems are controlled independently while other systems are controlled by the hub's control solution


Hysteresis and Saturation

Introduction **Subsystems** •Actuation Formation Control Control •Requirements •Design •Trades •Issues •Budgets **Estimates** •Metrology •Electronics •Structure/Power Operations Implementation Conclusion

Hysteresis

Experimental data

for curve

Saturation of electromagnets and torque wheels

Budget Estimates

Introduction

Subsystems

•Actuation

•Requirements •Design

•Trades

•Issues

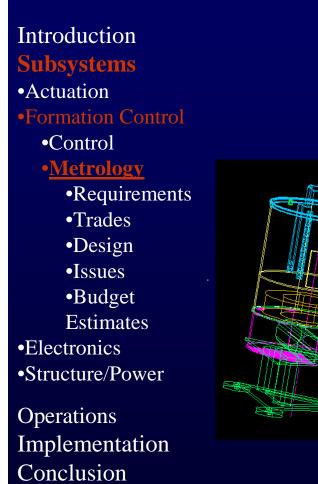
•Budgets

Estimates

•Metrology

•Electronics

•Structure/Power


Operations Implementation Conclusion

Cost for maintenance of lab equipment

Metrology

Oscar Murillo

Metrology

5/24/2002